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Introduction

L’axiomatisation de 'arithmétique est proposée par Giuseppe Peano dans
son Arithmetices principia nova methodo exposita [Pea89| publié en 1889 et
indépendamment par Richard Dedekind dans son Was ist und was sollen
die zahlen ? [Ded93| publié en 1888. Ce systéme d’axiomes (’axiomatique de
Parithmétique dans la logique du deuxiéme ordre : PAy ) contient la formali-
sation de la récurrence dans la logique du deuxiéme ordre. Grace a la grande
puissance expressive de la logique du deuxiéme ordre, cette axiomatisation
ne décrit qu’un seul objet : N.

La logique du premier ordre est moins expressive que la logique du
deuxiéme ordre. L’axiomatique de 'arithmétique dans la logique du premier
ordre (PA;) est donc trés loin de définir un unique objet. Les modéles de
PA; différents de N s’appellent les modéles non standard de I'arithmétique
de Peano du premier ordre. Les modéles non standard de PA; sont proposés
par Thoralf Skolem dans ses articles [Sko33| et [Sko34]. En particulier, il
montre que N a une extension finale élémentaire.

Dans ce mémoire, on va commencer par donner quelques rappels de théo-
rie des modéles qui sont essentiels pour la suite du texte. Ensuite on va définir
I'axiomatique de Peano et étudier certaines de ses propriétés. Finalement on
va se concentrer sur les extensions de modéles de PA;. On va examiner les
conditions de transfert de la vérité dans les extensions. Dans ce contexte les
deux résultats suivants vont étre essentiels :

— Le théoréme de Robert MacDowell et Ernst Specker [MS61] est une

amélioration du résultat de Skolem qui montre que tout modeéle de
PA; a une extension finale élémentaire.
— Le théoréme de Haim Gaifman [Gair2],|Gai70].



Remerciements

Je tiens & remercier Monsieur Adrien DELORO, maitre de conférences
a Sorbonne Université, qui m’a encadré tout au long de ce mémoire et qui
m’a fait partager ses brillantes intuitions. Qu’il soit aussi remercié pour sa
disponibilité permanente et pour les nombreux encouragements qu’il m’a
prodigués.

Je tiens aussi & remercier Monsieur Tuna ALTINEL, maitre de confé-
rences & I’Université Claude Bernard Lyon 1, pour ses encouragements et
conseils.



Chapitre 1

Rappels de théorie des modéles

On attend que le lecteur connaisse les notions suivantes :

— logique du premier ordre,

— théorie,

— satisfaction,

— modéle,

— cohérence,

— satisfaisabilité etc.

Dans l'annexe [A] il y a un rappel général de la logique du premier ordre
couvrant les définitions des notions ci-dessus.

Dans la suite du texte, on va se concentrer sur le langage du premier ordre
particulier £4 = {0, s,+,-}. On Pappellera le langage de ’arithmétique de
Peano du premier ordre. Au lieu de 'ajouter & L4, on pourra par la suite
définir la relation d’ordre et la soustraction de la fagon suivante :

r<ypardzy=zx+ z;
r—ypary<zAdzz+4+y==zx.

On n’a pas l'intention de définir ce qu’est, ou doit étre, la théorie des
modéles, néanmoins on peut la voir comme 1’étude des propriétés de la défi-
nissabilité.

Définition 1.0.1. Soit M une L-structure et E une sous-partie de M™ pour
n € N. E est définissable s'il existe une L-formule p(z1,...,x,) telle que :

E={(ai,...,an) e M" : M = p(a1,...,an)}.

1.1 Quelques résultats fondamentaux de théorie des
modéles
On rappelle explicitement que = est utilisé comme le symbole d’impli-

cation sémantique et = comme le symbole d’implication syntaxique. Leur
relation en logique du premier ordre est donnée par le théoréme ci-dessous.



Théoréme 1.1.1 (Théoréme de complétude de Godel). [Challd, p. 42/ Soient
T une L-théorie du premier ordre et @ un L-énoncé. Alors, T+ @ ssi : pour
tout modéle M =T, on a M = . O

Théoréme 1.1.2 (Compacité). Soit T une L-théorie du premier ordre. T
est satisfaisable ssi toute partie S C T finie est satisfaisable.

Démonstration. SiT est finiment satisfaisable alors elle est cohérente. Comme
elle est cohérent, selon le théoréme de complétude, elle est satisfaisable. [J

Définition 1.1.1. Soient A une L-structure et M C AN une sous-structure.
M est une sous-structure élémentaire de N, noté par M < N, si pour toute
formule ¢(z) et tout a € M :

M ¢(a) ssi N = ¢(a).

D’aprés la définition on voit immédiatement que si M < N alors M = N
La réciproque n’est pas toujours vraie.

Contre-exemple 1.1.1. Le langage du premier ordre L. = {<} s’appelle le
langage des ordres. Soient Nt Iensemble des entiers positifs, M = (N*, <)
et N = (N, <) des L.-structures ou la relation < est interprétée comme
usuel. M est une sous-structure de N.
Observons que M est isomorphe & N. Donc M = N. En revanche, pour
la L -formule
olz):Vyx<yVz=y

a parameétre [z = 1], on a M | ¢(1) mais N ¥ p(1). Donc M n’est pas une
sous-structure élémentaire de N.

Pour le langage de Parithmétique L4, les entiers sont « codés en dur »
dans 'ensemble des termes Term,, de la fagon suivante :

Notation 1.1.2. Pour n € N, soit n := s™(0) € Termg,,.

D’aprés la définition on observe que pour chaque L4-formule & para-
métres dans N, il existe un énoncé qui lui est équivalent dans toute extension

de N.
Proposition 1.1.1. Soit M une L 4g-structure. Alors N < M ssi N = M.

Démonstration. Supposons que ¢(Z) une L 4-formule et a € N. D’aprés I'ob-
servation, on a [N = ¢(a) ssi M = ¢(a)] ssi N = M. O

Théoréme 1.1.3 (Théoréme de Lowenheim-Skolem ascendant). [Kay91), p.
4] Soient M une L-structure infinie et k un cardinal. Alors M a une exten-
sion élémentaire de cardinal A > k. O



Théoréme 1.1.4 (Théoréme de Lowenheim-Skolem descendant). [Kay91,
p. 4] Soient |L]| =X > Vg et N une L-structure de cardinal k > X. Alors il
existe une sous-structure élémentaire M < N avec IM]| = \. O

Théoréme 1.1.5 (Teste de Tarski-Vaught). [Kay91, p. 4] Soient M C N
des L-structures. Alors les propriétés suivantes sont équivalentes :
— M=<N;
— pour toute L-formule p(Z,y) et pour tout a € M,
si N = Jyep(a,y), alors il existe b € M tel que N |= ¢(a,b). O

1.2 Logique du deuxiéme ordre

Dans la logique du premier ordre (voir I'annexe , les variables ne
peuvent décrire que les éléments d’une structure. Donc on ne quantifie que
sur les éléments. En revanche, la quantification sur les sous-ensembles, fonc-
tions ou relations d’une structure est « naturelle » en mathématiques. Ceci
peut a priori suggérer d’étendre la logique.

Définition 1.2.1. Un langage du deuxiéme ordre se définit en ajoutant les
symboles :
— k-aires symboles de constantes d’ensembles (prédicats) PF, pour tout
k>1;
— k-aires variables d’ensembles (prédicats) Xf, pour tout k > 1;
— quantificateurs Het V
a la liste de symboles du premier ordre.

Ces nouveaux quantificateurs parcourent les sous-ensembles. On donne
quelques exemples d’énoncés du deuxiéme ordre.

Exemple 1.2.1 (Bon ordre). Un ordre total (E, <) est un bon ordre, si toute
partie non vide de E posséde un élément minimal.
On peut formaliser ceci par la formule de la logique du deuxiéme ordre :

VS 3xS(z) — [FxVyS(z) A S(y) — = < y].

Exemple 1.2.2 (Axiome de la borne supérieure). Toute partie S non-vide
et bornée de ’ensemble des nombres réels R posséde une borne supérieure
dans R.

On peut formaliser ceci par la formule de la logique du deuxiéme ordre :
VS [FzS(x) A (FyVzS(x)) — = < y]
— [(32Vz(S(x)) = 2 <z AVyVzS(z) = (v <y — 2z < y)]

On définit la syntaxe de la logique du deuxiéme ordre de fagon similaire

a la syntaxe de la logique du premier ordre. [van04, p. 143] Dans le mémoire,
on ne s’intéresse pas a la théorie de la démonstration de la logique du second



ordre. La raison de ceci surtout est que d’aprés le contre-exemple [2.1.1];
la compacité n’est pas valide pour la logique du deuxiéme ordre. Donc la
complétude non plus.

1.3 Incomplétude

« Lorsqu’il s’agit de poser les principes fondamentaux d’une science, l’on
doit établir un systéme d’axiomes renfermant une description compléte et
exacte des relations entre les concepts élémentaires de cette science. » [Hil02),
p. 14]

Théoréme 1.3.1 (Théoréme d’incomplétude de Godel). Soit T une L4-
théorie récursivement axiomatisable et cohérente qui étend PAy (définition
. Alors il existe un énoncé p tel que ni T @, ni T F —p. (]

Le théoréme d’incomplétude utilise I’arithmétique de Peano (PA7) définie
dans le chapitre 2] On préfére mettre ensemble tous les rappels.

Clairement PA; n’est pas compléte d’aprés le théoréme d’incomplétude.
De plus pour chaque L£-énoncé ¢, on a soit ¢ € Th(N) soit ¢ ¢ Th(N).
Donc d’apreés le théoréme Th(N) ne peut pas étre donnée par une
L a-théorie récursivement axiomatisable.

Comme dans la suite du texte on en aura peu besoin, on ne donne pas
de détails (voire [Kay91) ch. 0 et 3]) sur la théorie de la calculabilité, codage
de Gadel etc.

Définition 1.3.1. Soient f : N¥ — N une fonction totale et T D PA; une
L 4-théorie. f est représentée dans T, s’il existe une £ 4-formule p(z1, ..., 2k, y)
telle que, pour tout 7 € NF :

T+ Jlyp(n,y)
et
si k= f(n) alors T F (7, k).

Théoréme 1.3.2. [Kay91, p.36] Soit f : N¥ — N récursive. Alors f est
représentée dans PA1. O

Exemple 1.3.1. L’ezponentiation (x,y) — x¥ est récursive. Donc il existe
une formule qui la représente dans PA;.



Chapitre 2

Axiomatique de Peano

L’axiomatisation de I’arithmétique est proposé par Giuseppe Peano [Pea89]
et indépendamment par Richard Dedekind [Ded93].

2.1 Arithmétique de Peano

On commence par décrire le comportement de N en tant que £ 4-structure.
La liste ne sera compléte qu’avec la formalisation de la récurrence.

Théorie du successeur. Elle est donnée par les axiomes :
S1 Va sz #0;
S2Vex#£0— Jyx=sy;
S3 VaVy sx = sy — x =y.

Soit M un modéle de la théorie du successeur. Pour x € M on définit
I'orbite de z comme ’ensemble de tous ses successeurs et prédécesseurs. M
contient 'orbite de 0 c’est a dire 0, s0, . .., s™0, ... qui est une copie de (N, s).
Les autres orbites peuvent étre soit des cycles finis, soit des copies de (Z, s).
Soit R un ensemble de représentants des orbites de M ; on a bien

M= | |[a].

TER

Théorie de I’addition. Elle est donnée par les axiomes :
Al Ve O0+z==x;
A2 VaVy x + sy = s(x + y).



Théorie de la multiplication. Elle est donnée par les axiomes :

M1 Vz0-2=0;

M2 VaVyz-s(y) =z -y + x.

L’addition (et la multiplication) de N est associative et commutative
mais ce n’est pas évident a priori de la théorie ci-dessus : les propriétés

algébriques attendues pourront étre démontrées par récurrence une fois celle-
ci axiomatisée.

Arithmétique de Peano du deuxiéme ordre

Définition 2.1.1. La théorie de I'arithmétique de Peano du deuziéme ordre
(PA3) est formée des axiomes précédents et de I'énoncé du deuxiéme ordre :

R2 Vp [p(0) AVz(p(z) = p(sz))] — Vo p(x).

Le symbole V désigne la quantification du deuxiéme ordre, i.e. la quan-
tification sur les propriétés; R2 est une formule de la logique du deuxiéme
ordre. Manifestement N est un modéle de PAs.

On peut également reformuler R2 en termes de sous-ensembles sous la
forme :

R2VSCM[0eSAVz(zeS—sxeS)|—S=M.
Proposition 2.1.1. Tout L z-modéle de PAy est isomorphe a N.

Démonstration. Soit M un modéle de PAs. Définissons 'application f :
N — M par 0 — 0M et n +— s"0M. Alors f est un morphisme car 0 — 0M,
f(sz) = sf(z), flz+y) = f(2)+ f(y) et f(z-y) = f(z) f(y).

Supposons n < m et s"0 = s™0. D’aprés l'injectivité du successeur on
a s™™"(0) = 0. Or, 0 n’est pas un successeur. Donc n = m et f est bien
injective.

De plus 0 € Im f et pour tout x € Im f on a sz € Im f. Par R2, Im f =
M. Donc f est surjective. O

A premiére vue il peut sembler qu’il ne reste plus rien a découvrir dans
I’arithmétique de Peano, puisque l'on a trouvé une L 4-théorie catégorique.
Néanmoins travailler sur une théorie du deuxieme ordre a des désavantages.
Par exemple ; le théoréme de complétude n’est pas valide pour la logique du
deuxiéme ordre (conséquence du résultat céléebre de Godel : les théorémes
d’incomplétude), ni le théoréme de compaciteé.

Contre-exemple 2.1.1. Considérons la théorie T = PAy U {c¢ > k}ren.
Toute sous-théorie finie de T est contenu dans T,, = PAs U {c¢ > k}r<, pour
un n € N. Or (N,n) = T,. Donc la théorie est finiment satisfaisable. En
revanche, comme N ne posséde aucun « élément infini » on a N ¥ T. Or,
d’aprés la proposition N était le seul candidat. En conclusion, T n’est
pas satisfaisable bien que toutes ses sous-théories finies le soient.



Arithmétique de Peano du premier ordre

Définition 2.1.2. L’arithmétique de Peano du premier ordre (PAy) est for-
mulée par la théorie du successeur, la théorie de ’addition, la théorie de la
multiplication et le schéma d’axiome de récurrence

R1 Pour toute formule p € Formg, :
[p(0) AV(p(z) — p(sz))] = Va p(z).

Clairement PA; est satisfaite par N. On D'appellera le modéle standard.
Tous les autres s’appellent non standard.

Avant d’avancer vers des sujets plus intéressants on donne quelques exemples
de démonstrations de propriétés algébriques attendues.

Proposition 2.1.2. PA; =VaVyVz (z+y) +x =2+ (y +z).

Démonstration. Soient M = PA; et p(x) la formule YyVz (2 +y) + = =
z + (y + x). Raisonnons par récurrence sur z. Soit = 0. Par l'axiome Al
onaMEVyvz (z4+y)+0=z+ (y+0). Ainsi M [ p(0). Supposons
M = p(x) ie. M =VyVz (2 +y) +x = z+ (y + ) pour un z € M. Par
I'hypothése de récurrence et A2, M = (z+y)+ sz = s((z+y) +2) =
s(z4+(y+x)) = (z+s(y+x)) = 2+ (y+ sz) pour tout y, z € M. D’aprés R1
ona M | VaVyVz (z+y)+x = z+(y+x). Donc PA; = VaVyVz (z+y)+z =
z+ (y+ ). O

Proposition 2.1.3. PA; =EVz 0+ 2z =2+ 0.

Démonstration. Soient M = PA; et p(x) la formule 0+ = xz+0. Raisonnons
par récurrence sur z. Soit « = 0. Par 'axiome Al on a M =040 = 0. Ainsi
M = p(0). A présent supposons M = p(z) i.e. M =0+ 2z = 2+ 0 pour
un x € M. Par A1, M E 0+ x =z + 0 = z. Par I'hypothése de récurrence
MEs(0+zx) =sz et M= s(z+0) =sz. Donc M = p(sz). D’aprés R1
onaMEVz0+z=x+0. Donc PA; EV2z0+2 =2 +0. O

Proposition 2.1.4. PA; = Vz s0 + = = sx.

Démonstration. Soient M |= PA; et p(x) la formule s0+2 = sz. Raisonnons
par récurrence sur x.Soit x = 0. Par I'axiome A1 on aMmodelss0 + 0 = s0.
Supposons M = p(x) ie. M = s0 4+ x = sx pour un x € M. Par A2,
M = 50 + sz = s(s0 + x). Par I'hypothése de récurrence M |= s(s0 + z) =
s(sz). Donc M [ p(sx). D’aprés R1 on a M = VasO + x = sz. Donc
PA; = Vz s0 + x = sx. O

Proposition 2.1.5. PA; EVaVyx +y =y + x.

Démonstration. Soient M = PA; et p(x) la formule Vy 2 +y = y + «.
Raisonnons par récurrence sur z. Soit x = 0. D’aprés la proposition [2.1.3] on
a M E p(0). Supposons M |= p(z) i.e. M = Vy x +y = y + x pour un
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x € M. Donc, M = x4+ y =y + = pour tout y € M. Par les propositions
RIZRIet A2, MEsz+y=s(z+0)+y=(z+s0)+y=a+(s0+y) =
z+(y+s0) = (x+y)+s0 = (y+2)+s0 = y+(z+50) = y+s(z+0) = y+sz
pour tout y € M. D’aprés R1 on a M | VaVy x +y = y + x. Donc
PA EVaVyx +y=y+ . O

Le reste des propriétés algébriques attendues peut étre démontré d’une
maniére similaire. [Ded93]|
Soit (z,y) une L g-formule. On propose 'énoncé Ly :

Vy3ae(z, §) = Fz(e(z,§) AVw < zop(w, 7).

Théoréme 2.1.1 (Schéma de minimisation). [Kay91, p. 45/ PA1 = Lyp
pour toute L a-formule . O

Construction d’un modéle non standard

Comme N est de cardinal Ng, d’aprés le théoréme de Léwenheim-Skolem
(ascendant), il existe des modéles de cardinal quelconque de PA;. Par cet ar-
gument on voit immédiatement que PA; a plusieurs modéles non isomorphes.
Tout modéle de PA; non isomorphe & N est dit non standard. Est-ce qu’on
peut en « construire » un?

On étend L4 en ajoutant un nouveau symbole de constante ¢ et on le
note L.. Considérons la L.-théorie

T= PA1 U {ﬂ < C}neN

ot n désigne le terme s™(0) comme a la notation
Toute sous-théorie finie de T est contenue dans

Tp,=PAiU{n<c:n<k}

pour un k € N. Manifestement (N, k) = Tx. D’apres le théoréme de com-
pacité, T = U,T, est satisfaisable, i.e. il existe un L.-modéle M de T.
Une L.-structure est forcément une L 4-structure en oubliant le symbole de
constante supplémentaire ¢. En particulier on a M = n < ¢ pour tout
n € N. Donc linterprétation de ¢™ n’est pas un « entier ». On conclut que
les L g4-structures N et M ne peuvent pas étre isomorphes.

Observons que si I'on considére la L .-théorie

T = Th(N) U {n < c}nen,

on peut montrer la cohérence de T, i.e. il existe une L.-structure M |
T, en appliquant le méme raisonnement. Comme M = Th(N), d’aprés la
proposition [I.1.1] on conclut qu’il existe une extension élémentaire N < M
non standard.

11



Le plongement canonique

Si M |= PA; on définit le plongement canonique f : N — M par n —
s"0M. Elle est clairement bien définie et injective. En outre 'application f
est un plongement de L 4-structures.

Donc tout modéle de PA; contient une copie de N ou par abus de langage
N est une sous-structure de tout modele de PA;. Tout élément x € M \ Im f
est dit non standard. On conclut tautologiquement qu’un modéle de PA; est
non standard s’il contient des éléments non standard.

2.2 Structure d’ordre

A partir de la relation d’ordre usuel sur N, on va définir un ordre sur
tous les modéles de PA;.

Définition 2.2.1. Soit £ un ensemble. La relation < est un ordre sur E si
la £-structure (voir le contre-exemple (E, <) vérifie les axiomes :
Ol Vz -z < z (non réflexivité) ;
02 VaVyVz [(x < y ANy < z) — = < 2] (transitivité).

Définition 2.2.2. Un ordre (F, <) est appelé total (ou linéaire) s'il vérifie
I’axiome :
03 VaVy [(z < y) V(x =y) V (y < z)] (totalité).

L’abréviation = < y désigne (z <y)V (x =y).
Soit M = PA; une L 4-structure. On définit la relation « < » sur M de
la facon suivante :

r<yssidz (z#0)A(x+z=1y).

On peut démontrer par récurrence que M = {01, 02, 03}. Donc on peut
désormais voir M comme une L_-structure et on se permet d’employer le
symbole non logique < dans les formules. En outre comme M est un modéle
arbitraire de PA1, on conclut que PA; - {0O1,02,03}.

PA; implique aussi les propriétés suivantes :

OA VaVyVz (z <y —zx+2<y+2);

OM VaVyVz (0 <zAz<y—z-2<y-2)
qui décrivent + et - par rapport & I'ordre. Ceci peut étre démonté par récur-
rence.

Définition 2.2.3. Soit M un modéle de PA;. On définit la soustraction sur
M de la fagon suivante :

b 0 siMEa<b
“ Tl ceMtelque MEDb+c=a siMEa>b.

Définition 2.2.4. Un ordre est appelé discret a plus petit élément 0 s’il
vérifie les axiomes :

12



OD1 VzdyVz ez <yA(z<z—y<2z2);
OD2 Vx 0 < x;
OD3 VzadyVzz #0 sy <z A(z<z—2z<y).

On vérifie par récurrence que 'ordre défini sur les modéles de PA; est
discret a plus petit élément 0. A présent on étudie quelques propriétés élé-
mentaires de 'ordre dans un modéle de PA;.

Proposition 2.2.1. PA1 - VaVy (y >z >y >z +1).

Démonstration. Soit M = PA;. Supposons M |= y > = pour x,y € M.
Alors par définition de 'ordre sur M, il existe z € M tel que z # 0 et
Y=+ z.

On étudie d’abord le cas pour = 0. Supposonsque M =y >0—y > 1
et MEy+1>0pourye M. Alorss MlEy+1>1(sinon MEy+1<1
ss’il existe z € M tel que z > 0 et y+ 1+ 2 =1 dans M ssi y + z = 0 dans
M qui est absurde). Par récurrence on a M = Vy (y >0 — y > 1).

Donc z > 1 dans M. Par OA y = z+ 2 > = + 1 dans M. Alors M
VaVy (y > —y >z +1). O

Proposition 2.2.2. Soient M un modéle de PAy et pour n € N la formule :
on:Vex<n—-x=0V---Vzr=n.
Alors M = ¢y, pour tout n € N.

Démonstration. Soit M = PA;. Raisonnons par récurrence sur n. Pour n =
0 on a M = o par OD2. Supposons M = ¢, e M EVrz <n—z=
OV---Vz=n Alors M EVz(x <n+1—2z<nVz=n+1l)parla
proposition 2.2.1] Donc M =Vz 2 <n+1 -2 =0V ---Vz=nVaz =
n+ 1. O

Définition 2.2.5. Soient M et N des L-structures. N est appelée une ex-
tension finale de M (ou également M est appelée une sous-structure initiale
de N), désigné par M C¢ N ssi M C N et pour tous m,n € N :

siN En<metme M, alors n € M.
Théoréme 2.2.1. Soit M |=PA;. Alors N Cy M.

Démonstration. Soit h : N — M le plongement canonique (voir [2.1)) défini
par n — nM. D’aprés la proposition

Im(h) = {p™ :n € N} C; M.

N M

Le dessin ci-dessus est donc approprié pour imaginer un modéle non standard
de PA1 .
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2.3 Nombre de complétions de PA;

Théoréme 2.3.1. Soit T O PA; une L 4-théorie récursivement axiomati-
sable et cohérente. Alors T a 280 complétions.

Démonstration. Soit T O PA; une théorie récursive et cohérente. D’aprés
le théoréme il existe un énoncé 1 tel que T U {¢1} et TU {—p7}
sont cohérentes. Soit s, une suite finie de 0 et 1 ot n décrit sa longueur. On
axiomatise ’extension récursive T, de T par récurrence :

— Tp=T;

— Tso=TU{~¢r, };

— Tsnl =TU {QOTSn}.

Ts, est une extension finie de T pour tout n € N. Par construction elle est
cohérente.

Soit s : N — {0,1} une suite. On définit la théorie récursive T, =
Unen Tsn- Donce Ty est cohérente par construction. De plus elle est contenue
dans une complétion de T.(voir le théoréme .

Observons que cette extension récursive peut étre représentée par un
arbre comme au dessus. Donc, chaque complétion correspond & une « branche »
de I’arbre. Le cardinal de branches de I'arbre est bien 20, O

Donc Th(N) n’est que I'une des 2% complétions de PA;.
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Chapitre 3

Extensions de modéles

3.1 Le nombre d’extensions élémentaires dénom-
brables de N

On a déja montré qu’il existe un infinité de modéles non isomorphes de
PA; avec un argument sur le cardinal. En revanche on peut vouloir se limiter
aux modéles dénombrables en espérant démontrer un résultat d’unicité.

D’aprés la proposition il existe « au plus » 2% modéles dénom-
brables de PA; & isomorphisme prés. Donc il existe « au plus » 280 extensions
élémentaires dénombrables de N & isomorphisme prés.

Théoréme 3.1.1. Il y a 280 extensions élémentaires dénombrables de N a
isomorphisme preés.

Démonstration. Soient P I’ensemble des nombres premiers et .S C P. Consi-
dérons la théorie

Ts=Th(N)U{Jzp-2 = clpes U{Vz p = # c}pgs.

Toute partie finie de Tg est contenue dans

T, =Th(N)U {3z p 2 = c}pesrpcn U{VZ D T # c}pasrp<n

pour un n € N. Soit ¢ = Hp€SAp<np; alors (N, q) = T,. D’aprés le théoréme
de compacité, Tg est satisfaisable. Soit Mg un modéle de Tg. D’aprés le théo-
réme de Lowenheim-Skolem (descendant) il existe un modéle dénombrable
Mg < Ng de Tg.

P(P) désigne I'ensemble des parties des entiers premiers et Mody, (Th(N))
désigne ’ensemble des extensions élémentaires dénombrables de N & isomor-
phisme prés. On définit 'application

f:P(P) — Mody,(Th(N))
S— Mg
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ol Mg est un modéle dénombrable de Tg.
Observons que pour un S C P fixé, f(S) = Mg peut étre un modéle de
Tg ou S # S’ C P. Définissons la relation ~ sur P(S) par :

S~ S ssi f(S) = £(5).

Ceci est une relation d’équivalence.

Soit M € Mody,(Th(N)), alors il peut étre un modéle de Tg pour au
maximum Ry parties S € P(P), i.e. la classe d’équivalence f~!(M) contient
au maximum Xy sous-ensembles de P. Or le cardinal de P(P) est 2%. Donc
le cardinal de I’ensemble de classes d’équivalence P(P)/ ~ est supérieur ou
égal a 2%, Comme I'application

f:P(P)/ ~ — Mody,(Th(N))
[S] — Mg

est une injection, il existe au moins 280 modéles dénombrables de Th(N). [

Corollaire 3.1.1.1. Il existe 280 modéles dénombrables de PA, & isomor-
phisme pres. O

3.2 Hiérarchie arithmétique

On va définir certaines classes de £ 4-formules. Ensuite on va étudier leurs
conditions du transfert de la vérité pour les L 4-structures.

Définition 3.2.1. Soit ¢t un L4-terme. Un quantificateur est borné s’il est
de la forme :

— Jr(x <tAN---);

— Vz(z <t —--).
On emploie respectivement les abréviations 3z < t(---) et Vo < t(---).

Définition 3.2.2. Une L4-formule ¢(Z) est de classe Ay, si elle est équiva-
lente & une formule dans laquelle tout quantificateur est borné.

Définition 3.2.3. Une L -formule p(Z) est de classe X1, si elle est équiva-
lente & une formule de la forme 35 (Z, y) avec (T, 7) € Ay.

Définition 3.2.4. Une £ -formule ¢(Z) est de classe Iy, si elle est équiva-
lente & une formule de la forme Vg (z, §) avec ¥(Z,y) € Ap.

Observons que ¥ et II; sont stables par A et V. Par exemple : soit
Jye1(z,y) et Fypa(z,y) de Xy. Alors leur disjonction, qui équivaut & JyIzp(Z, y)V
v2(Z, z), l'est aussi. De plus, la négation d’une formule ¥ est II; et la réci-
proque est aussi vraie.
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Définition 3.2.5. Soient M C N des L 4-structures et I' un ensemble de
L a-formules. M est une sous-structure I'-élémentaire de N, noté M <r N
si pour tout a € M et o(z) € I';

M () s N = p(a).
Si M =p N alors T est dit absolu pour ’extension M C N.

Théoréme 3.2.1. Soient M et N des L 4-structures. Si N est une extension
finale de M, alors M <a, N.

Démonstration. Raisonnons par récurrence sur la complexité des Ag-formules.
Une L 4-formule atomique (i.e. une formule de complexité n = 0) est de
forme t(z) = ¢/(Z) pour t,t' € Term,,. Donc clairement M = t(a) = t/(a)
ssi N | t(a) = t'(a) pour a € M.
Faisons I’hypothése de récurrence : pour toute ¢(Z) € Ag de complexité
inférieure ou égale & n et pour tout a € M,

M E ¢(@) ssi N o(a). (*)

Supposons que ¢(Z) est ¢1(Z) A p2(Z), de complexité n+ 1. Pour a € M,

ME (@) st M = 01(a) et M = g2(a)
par (1) ssi N = ¢1(a) et N |= ¢2(a)
ssi NV | p(a

Les cas ou (&) est ¢1(Z) V ¢2(Z) ou —p1(Z) de complexité n + 1 sont
montrés par des arguments similaires.

Supposons que (&) est Jy < t(Z)p1(Z,y), de complexité n + 1. Pour
ae€M,onaME p(a)ss'il existe b < t(a) € M tel que M |= ¢1(a,b). Or
comme M Cy N et t(a) € M,

beM:MEb<t@}={beN:N Eb<ta))

Donc par (ED,
M E p(a) ss'il existe b < t(a) € N tel que N = ¢1(a, b)
ssi NV = p(a).
Le cas ¢(&) est Yy < t(Z)p1(Z,y) de complexité n + 1 est montré par un
argument similaire. O

Corollaire 3.2.1.1. Soient M Cy N une extension finale de L 4-structures
et p(z),Y(x) des La-formules avec p(T) € L1 et () € 1. Alors pour tout
aeM:

1. si M = p(a), alors N = p(a) ;
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2. si N E(a), alors M = (a).

Démonstration. Soient () équivalent & la ¥1-formule 3yp;(Z,y) avec ¢ €
Ay et a € M. Supposons que M = p(a). Alors il existe b € M tel que M =
v1(a,b). Comme ¢ € Ag, d’aprés le théoréme on a N = ¢1(a,b).
Donc N = Jyp1(a,y), i.e. N = p(a).

Soient v(a) équivalent a la ITy-formule Vyi)1 (Z, y) avec ¢; € Ag et a € M.
Supposons que N | ¥(a), i.e. N = ¢1(a,b), pour tout b € N. Comme
Y1 € Ag, d’aprés le théoréme on a M [ ¢i(a,b) pour tout b € M.
Donc M | Yypi(a,y) i.e. M = ¢(a). O

Définition 3.2.6. Une formule est ¥, si elle est équivalente a une formule
de la forme :

2o (Z,7)
ou ¢ est IL,.
Définition 3.2.7. Une formule est I1,,4; si elle est équivalente & une formule
de la forme :
7o (7, )
ou ¢ est Xp,.
Définition 3.2.8. Une formule est A,, si elle est & la fois X, et II,,.
Toute formule de la logique du premier ordre est dans ¥, ou II,, pour un
n € N. Observons les inclusions 3, C A, C ¥,1q et I, C A, CIl,41. La
hiérarchie arithmétique peut étre visualisée par le dessin ci-dessous.

\\\\ N ///,,
/ \
PO 1Ty
\ /
Ay
/ \

P IT;
\ /
Ay
Yo=24g =1l

La hiérarchie arithmétique n’est pas dégénérée i.e. 3, # Y41 et 1L, #
II,,+1 pour aucun n € N.



3.3 « Overspill »

Soient M un modéle non standard de PA; et a € M non standard.
Définissons la partie :

Mg ={be M: MEb<a" pour un n € N}.

Observons que M _ v est stable sous +, -, s. C’est donc une £ 4-structure.
De plus M_ v Cf M est une extension finale.

Par I'exemple I’exponentiel z = x¥ est représentée dans PA; par
une La-formule ¢(z,y,2). Pour tout z,y € M il existe unique z € M tel
que M = ¢(x,y, z). Alors pour a € M il existe un unique élément a® € M
tel que M = ¢(a, a,a®).

Comme a > N, on a a® > b pour tout b € M_,n. Ainsi M_,n # M.
De méme, M _,n # PA;. On conclut naivement que M_,n est « trop petit »
pour satisfaire PA;.

Cette fois on définit la partie :

Mecg={beM: M=b<a” pour un n € N}.

Clairement M., €y M. Mais M., ¥ PA; comme a,a® € M., mais
a® > M.

On peut donc trouver des segment initiaux pour M facilement en em-
ployant la stratégie ci-dessus. Néanmoins afin de construire une sous-structure
initial satisfaisant PA; on doit changer cette perspective.

Définition 3.3.1. Soient M |= PA; et I une partie non vide de M. Alors I
est un segment initial clos de M s’il vérifie :

— pour tout y € I, si x <y, alors x € I;

— I est stable par successeur.

Proposition 3.3.1. Soient M |= PAy non standard et I & M un segment
initial clos propre de M. Alors I n’est pas définissable.

Démonstration. Supposons par 'absurde que la £ 4-formule ¢(z,a) a para-
metres a € M définit I & M. Comme 0 € I et que I est stable sous s,
M E p(0,a) AVz(p(z,a) — p(sz,a)). Or M = PA;, donc par récurrence
M = Vzp(z,a). Donc I = M. O

Théoréme 3.3.1 (Overspill de Robinson). Soient M = PA; non standard
et I & M un segment initial clos propre de M. Supposons que a € M et
o(x,a) soit une L4-formule tels que :

M = ¢(b,a) pour tout b € I.
Alors il existe ¢ > I dans M tel que :

M Ve <cop(zx,a).
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1 c M

Démonstration. Solent a € M et p(z,y) une Ly-formule. Supposons par
labsurde que M |= ¢(b,a) pour tout b € I et il n’existe aucun ¢ > I dans
M tel que M =V < co(z,a).

Considérons la partie

E={de M: M EVz <dyp(z,a)}

définie par la formule Vz < y ¢(z,a).

Soit b € I. Alors comme I est un segment initial clos de M, pour tout
x < b dans M on a x € I. Par I'hypothése, on a M |= ¢(z,a) pour tout
x €1. Alors M EVz <by(z,a). Doncbe Eie I CE.

De plus, par ’hypothése, il n’existe aucun ¢ > I dans M tel que M =
Vr < ¢ ¢(x,a). Alors il n’existe aucun ¢ € F tel que ¢ > I. Donc E = I.
Or comme I est un segment initial clos propre de M, c’est absurde par la

proposition [3.3.1] O

3.4 Extensions finales et cofinales

Soit T une complétion de PA;. On va construire le « plus petit » modéle
de T dans la premiére partie de cette section. Ensuite on va appliquer les
résultats de la premiére partie pour montrer que tout modéle de PA; a une
extension finale élémentaire. On va finir la section avec une discussion sur
les extensions cofinales.

Définition 3.4.1. Soient M | PA; et A C M. Un élément b € M est
définissable dans M sur A s§'il existe une La-formule p(x,y) et un uplet
a € A tels que

M= ¢(b,a) et M |=Jz p(z,a).

On note dcl(M; A) I'ensemble de tous les éléments définissables de M
sur A. Si A est vide on note simplement dcl(M).

Théoréme 3.4.1. Si M = PAy et A C M alors A C dcl(M; A) < M.
Donc dcl(M; A) = PA;.

Démonstration. Soit a € A, alors il est définissable par la formule z = a.
Supposons x,y € dcl(M; A) définis respectivement par les formules &(x, a)
et 1(x,b) & paramétres a,b € A. Alors z -y et x +y (donc sz d’aprés le fait
que PA; F sx =z + 1) sont définis respectivement par les formules :

— FuIv &(u,a) A (v, b) Az =u-vet;

— JuTv E(u,a) A (v, b) Az =u+ .
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Donc dcl(M; A) est une sous-structure de M.

On utilise le teste de Tarski-Vaught pour montrer que dcl(M; A) <
M. Soit ¢(x,y) une La-formule. Supposons M |= Jzp(z,¢) & paramétres
¢ € dcl(M;A). Soit ¢ = (c1,...,¢,) et chaque ¢; est défini par la formule
&i(x,a) & paramétres a € A. Alors

n

M 323G\ & a) A ol 7))

=1
Par le schéma de minimisation nombre

n

M =3z By(/\ &yira) A p(y))
=1
AVz < xVu’)(/\ i(wi, a) — —p(z,w))].
i=1

La formule ci-dessus entre crochets définit un élément d € dcl(M; A) tel que

M = p(d,c). O

Définition 3.4.2. Soient T une complétion de PA; et M = T. On note
dclt = dcl(M), appelé le modéle premier de T.

Théoréme 3.4.2. [Kay91), p. 92] Soient T une complétion de PA; et M =
T. Alors il existe un unique plongement élémentaire dcly < M. En outre
limage du plongement est égal & dcl(M). O

Donc par le théoréme la définition de dclt ne dépend que de T. La
morale des corollaire suivants est que dclt est « petit ».

Corollaire 3.4.2.1. [Kay91, p. 92] Soit T une complétion de PA;. Alors
dclt est minimal i.e. il n’a pas de sous-structure élémentaire. O

Exemple 3.4.1. Pour 7' = Th(N) on a dclt = N comme N est une £4-
structure minimale satisfaisant T.

Définition 3.4.3. Soit T une théorie. Un type p(Z) sur T est un ensemble
de formules ¢(Z) tel que la théorie

TU{p(e) : (z) € p(T)}

(ot ¢ est un uplet de nouvelles constantes) est cohérente.
Le type p(Z) est;
— complet, si la théorie T U p(Z) est complet ;
— principal, s'il existe une formule 1(Z) telle que T U p(z) F ¥(T) et
TEVZ(¢¥(z) = ¢(T)) pour toute ¢(Z) € p(T);
— réalisé dans un modéle M |= T, §’il existe a € M tel que M | p(a)
pour toute ¢(Z) € p(Z); sinon on dit que M omet p(z).
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Observons que d’aprés le théoréme de complétude, si p(Z) est un type
sur T, alors il existe un modele M = T qui réalise p(z).

Corollaire 3.4.2.2 (Omission des types). Soient Lo une expansion de L4
obtenue ajoutant un ensemble C' de constantes et T O PAy une Lo-théorie
compleéte. Alors il existe un modeéle KK de T tel que pour tout type complet
p(z) sur T,

KC réalise p(Z) ssi p(Z) est principal.

Démonstration. Soit M = T et A C M la partie qui interpréte C. Soit
K = dcl(M; A). D’apreés le théoréme , ACK <M, donc K = T. Soit
p(Z) un type complet sur 7.

Supposons que p(Z) est réalisé par a € K. Soit a = (ay,...,a,) avec
a; défini dans M par la formule &;(z,¢) ou ¢ € A, i.e. M E &(a;,¢) et
M = Nz (z, ¢). Alors

K3z N &) (%)
i=1

Observons que A", & (z;, ) n'est satisfaite que par a € K. Alors on a

n
KEvE N &G(wie) — o(@)
i=1
pour toute ¢(Z) € p(z). Comme p(Z) est complet, par (¥) on a T U p(z)
Niz; &i(wi, €). Donc p(Z) est principal.

Réciproquement, supposons que p(Z) est principal, i.e. pour la formule
P(x)ona TUp(@)FY(z) et THVZ(Y(ZT) — ¢(Z)) pour toute p(Z) € p(z).
Comme T est compléte et T U p(Z) est cohérente, T + Jz1(Z). Donc K |
A7 (Z) et p(T) est réalisé dans K. O

Tout type principal p(Z) sur une théorie compléte T est réalisé dans tout
modéle M = T.

Extensions finales

Théoréme 3.4.3 (MacDowell et Specker). Tout modéle M = PA; a une
extension finale élémentaire propre.

On propose une esquisse de la démonstration du théoréme de MacDowell
et Specker. Soient M |= PA; et £4(M) Pextension du L4 obtenue en ajou-
tant un symbole de constante pour chaque élément de M. La stratégie de la
démonstration est comme suit :

Si M =X K avec K une extension finale de M et ¢ € K\ M, alors £
satisfait la théorie

{p(a):a e M | ¢(a),p est une L-formule} U {c > a}taem
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dans le langage £4(M) U {c}. De plus comme K est une extension finale de
M, il omet les types

pa(z) ={z<alU{z#b:be M Eb<a}.

On va définir K = dcl(N; MU{c}) pour une N' = M et un ¢ € N appropriés.
Avant de commencer a construire N et ¢ on fait une observation. Supposons
qu’on trouve un £ = M avec M C¢ K et ¢ € K\ M. Alors pour toute formule
o(z,7) et pour tout b € M, si K = ¢(c,b) alors M |= Vz3x(x > 2 Ap(z,b)).
Autrement dit, ¢(z,b) est satisfaite par les éléments d’un sous-ensemble non
borné de M. On va désigner la formule Vz3z(x > zA@(z,b)) par abréviation
EIcofxﬁao(xv b)
Lemme 3.4.1. Soient ¢(x) une L£La(M)-formule telle que M |= oo rxp(x)
et 0(x,y) une Lo(M)-formule arbitraire. Alors il existe une L 4(M)-formule
P(x) telle que :
— M }: Eicofxwoj);
— M Ya($(z) - o)
— pour tout a € M,
— soit M = JyVa(z > y AN(z) — 0(z,a));
— soit M = FyVx(z > y Ap(x) — —0(z,a)) . O

La démonstration du lemme [3.4.1| n’est pas nécessaire pour comprendre
le reste de 'esquisse et elle exige des arguments utilisant le codage de Gddel
qui est hors du contexte de ce mémoire. Pour cette raison on la saute.

On va utiliser le lemme pour construire ¢ € K\ M. On énumeére les
L.-formules (o L, = L4 U {c}) par :

HO(Ca ?J_O), 91(0, y_l)a o 79i(cay_i)a v

pour ¢ € N.
On construit une suite de £ 4-formules :

500(1')7 501(1')7 cee

telle que M |= Jeopzpi(x) pour tout @ € N. L’énumération des ¢;(x) se fait
de la fagon suivante. Soit po(x) la formule x = x. Soit ¢; donnée. Comme
M = Jeorxpi(), on construit ¢; 41 conformément au lemme telle que :
— M E Jopoprpita(v);
— M EVa(pin (@) = ¢il);
— pour tout a € M,
— soit M = JyVa(z > y A pir1(x) — 0i(z,a));
— soit M = IyVa(z > y A pit1(x) = —bi(x,a)) .
On construit ¢ pour satisfaire ;(x) pour tout i € N. Considérons la
LA(M) U {c}-théorie

T ={0(a) : M = 6(a) ou #(a) est un L4(M)-énoncé}
U{c> ataem U{pi(c)bien.
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Toute partie finie de T est satisfait par M ou ¢ est interprété par un
élément suffisamment large pour satisfaire ¢, (z). D’aprés le théoréme de
compacité T est satisfaisable.

Soient A/ = T un modéle arbitraire ou u interpréte ¢ et K = del(N; MU
{u}) = N. Clairement M U {u} C K. Par construction de T, pour toute
L a-formule 6(Z) et pour tout a € M, on a M = 6(a) ssi N |= 6(a) ssi
K = 6(a). Donc M =< K.

Définition 3.4.4. K est une extension conservative de M si pour tout b € K
et toute L£4-formule 6(u, v) il existe a € M et L4-formule 1(u, w) tels que :

fueK:KEOu,b)}NM={ucM: MEp(u,a)}.

Autrement dit, tout sous-ensemble de M définissable dans K est déja
définissable dans M.

En outre K est une extension conservative de M. Soient a € M et b € K
avec b < a. Alors 'ensemble E' = {u € £ : £ = u < b} N M est définissable
dans M tel que £ = {u € M : M [=9(u,a)} pour une ¢ et un a € M. Or
E est borné donc il posséde un élément maximal m. En effet m doit étre égal
a b. Donc b € E C M. Donc toute extension conservative K = M | PA;
est une extension finale.

Extensions cofinales

Définition 3.4.5. Soient M C N des modéles de PA;. A est une extension
cofinale de M, noté par M C.r N si pour tout a € N il existe b € M tels
que N Eb > a.

Montrer tout modéle non standard de PA; a une extension cofinale est
un résultat directe de compacité.

Proposition 3.4.1. Soit M = PA; non standard. Alors M a une extension
cofinale.

Démonstration. Soient M = PA; un modéle non standard et b € M un
élément non standard. Considérons la £(M) U {c}-théorie

T={p@:aeMlpa), oupeFormg,}U{c#altsem U{c<b}.

Observons que T est finiment satisfaisable par M avec une réalisation de
constante ¢ par un élément approprié de M. Donc par compacité il existe
un modeéle K = T. Considérons la sous-structure initiale

N={deK:K}d<apourunaec M}

de K. On a clairement M C.¢ N O
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Le résultat fondamental concernant les conditions de transfert de la vérité
dans les extension cofinales est le théoréme de décomposition de Gaifman.

Théoréme 3.4.4 (Gaifman). [Kay91, p. 89/ Si M C N sont des modéles

de PAy, alors il existe un unique modéle K {=PA; tel que M C.p K C¢ N
De plus M < K. O
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Conclusion

Dans ce mémoire, en outre des bases de modéles de I'arithmétique de
Peano, on a étudié les conditions de transfert de la vérité dans les extensions.
On peut considérer

— Le théoréme de Robert MacDowell et Ernst Specker [MS61] est une

amélioration du résultat de Skolem qui montre que tout modéle de
PA; a une extension finale élémentaire.

— Le théoréme de Haim Gaifman |Gair2],|Gai76].
comme les résultats essentiels de cette étude.

Un débouché intéressant de cette étude peut étre appliquer les idées
dans le MacDowell-Ernst Specker et Gaifman aux modéles de la théorie
des ensembles de Zermelo-Fraenkel afin d’éclairer le role d’axiome d’infinité.
[Ena99|
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Annexe A

Bases de la logique du premier
ordre

En mathématiques, on s’intéresse aux objets mathématiques, & leurs pro-
priétés, et a la vérification de ces propriétés. La logique propositionnelle
décrit les relations de vérité entre les propositions mais pas les objets. Pour
cette raison, on va adopter un symbolisme qui pourra exprimer les propriétés
des objets. [HA38l p. 50] On l'appelle la logique du premier ordre.

On va systématiquement définir un alphabet approprié par type de struc-
ture (symboles d’un langage), des mots (termes) décrivant les éléments et des
phrases (formules) décrivant les propriétés. Les structures sont décrites par
certains énoncés de base, qui s’appellent les aziomes. Les théoréemes se dé-
duisent selon certaines régles de raisonnement & partir des axiomes.

Le premier ordre signifie qu’on s’est permis de quantifier sur les éléments
mais pas les sous-ensembles. Le mémoire considére également des formules
de la logique du deuziéme ordre. Dans ce cas, on le précisera.

A.1 Syntaxe de la logique du premier ordre I

La grammaire de la logique du premier ordre est intuitive et simple.

Définition A.1.1. Un langage du premier ordre L contient :
— les symboles logiques :
— opérateurs booléens : A,V, —;

— égalité : =;
— quantificateurs : 9 et V;
— variables : vg, v1,... (dénombrable);

— parenthéses : ) et (;
— des symboles non logiques :
— symboles de constantes ¢; ;
— symboles de fonctions de différentes arités f; ;
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— symboles de relations de différentes arités Ry.
La relation « = » sera toujours dans le langage méme si elle est implicite.
On indique simplement £ = {c;, f;, Rk} i jx)-

Les L-expressions sont les chaines finies de caractéres.

On va utiliser différents types de parenthéses comme |, [ ou }, { de méme
que les abréviations :

— @ = pour —p Vi

— p <P pour (p = Y)A (P — @)
dans les expressions du premier ordre pour une lecture plus aisée. De plus
on peut omettre des parenthéses selon la convention que « — » soit plus
contraignant que « V, A » et que « V, A » soient plus contraignants que « —
, 4> » pour la méme raison.

Soit £ un langage du premier ordre. Toute L-expression n’est pas for-
cément significative. On construit donc par récurrence les termes de £, qui
décrivent les éléments des objets mathématiques et les formules de L, qui
décrivent des propriétés sur ces objets.

Définition A.1.2. L’ensemble Term des termes de £ est défini par :
— si ¢ est un symbole de constante de £, alors ¢ € Term;
— si x est un symbole de variable de L, alors x € Term;
— si f est un symbole de fonction n-aire de L et ty,...,t, sont dans
Term, alors f(ty,...,t,) € Term.

Définition A.1.3. L’ensemble Form des formules de £ est défini par :
— si R est un symbole de relation n-aire de £ et t1,...,t, sont dans
Term, alors R(t1,...,t,) € Form (appelée « formule atomique ») ;
— si ¢ € Form, alors —p € Form;
— si ¢, € Form, alors ¢ Ay € Form et ¢ V¢ € Form;
— si x est un symbole de variable et ¢ € Form, alors 3z ¢ € Form et
Vx ¢ € Form.

La notion de complexité vient naturellement de la construction de la
syntaxe par récurrence et peut étre définie par : la complexité des formules
atomiques (resp. symboles de constantes, variables) est égale a 0 et si la
complexité de la formule ¢ (resp. du terme ) est n et la complexité de 1
est inférieure ou égale a n, alors la complexité de —p, o A, © V¥, Jxp,Vrp
(resp. f(t)) est n+ 1.

On définit le cardinal ||£|| de £ comme la somme des cardinaux des
symboles logiques et symboles non logiques. Donc comme le cardinal de
I’ensemble des symboles logiques est X, on a

L[] = Ro + [L].

Proposition A.1.1. Le cardinal de Form est égal au cardinal de L.
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Démonstration. Soit k = ||L]||. Toute formule est une chaine finie de L.
Comme il existe x chaines finies de £, on a |[Form| < k. Observons que
si le cardinal des symboles de relation est égal & x alors il existe déja
formules atomiques, donc |[Form| > k; sinon, alors |Term| = k, donc comme
il y a k formules de la forme tg = t; ou tg,t; € Term, on a |[Form| > k. O

Définition A.1.4. Dans une L-formule, une variable peut avoir des occur-
rences liées ou libres. On définit cela par récurrence :
— toute variable apparaissant dans une formule atomique est libre;
— si ¢ est =) alors les occurrences libres (et liées) d’une variable dans
w sont celles de 9 ;
— 81 @ est ¢ A6 alors les occurrences libres (et liées) d’une variable dans
© sont celles de I'union des occurrences dans ) et 0
— 81 @ est ¥ V6 alors les occurrences libres (et liées) d’une variable dans
 sont celles de I'union des occurrences dans ) et 0
— si ¢ est Jxy) alors chaque occurrence de x dans ¢ est liée et les oc-
currences des autres variables sont comme dans 1) ;
— si ¢ est Ve alors chaque occurrence de x dans ¢ est liée et les oc-
currences des autres variables sont comme dans ).

Un énoncé est une formule dans laquelle aucune variable n’apparait de
fagon libre.

A.2 Sémantique de la logique du premier ordre

Intuitivement, on définit les « univers possibles » dans lesquels L se réa-
lise, et la « vérité » (relative) par rapport & ces univers.

Soit £ un langage du premier ordre. Une L-structure M est donnée par
un ensemble M et une interprétation de chaque symbole non logique de L.

Définition A.2.1. Une interprétation se définit de la fagon suivante :

M est un élément de M ;

— si ¢ est un symbole de constante, alors ¢

— si f est un symbole de fonction n-aire, alors fM : M™ — M est une
fonction ;

— si R est un symbole de relation n-aire, alors R est un sous-ensemble

de M™.

Définition A.2.2. Soient M et N des L-structures. M est une sous-structure
de NV, ce que I'on note M C N si M est un sous-ensemble de N et :

— si ¢ est un symbole de constante, alors ¢M = el ;

— si f est un symbole de fonction n-aire, alors fM est la restriction de

N aMr

— si R est un symbole de relation n-aire, alors RM = RN nM™,
Définition A.2.3. Soient M et N des L-structures. L’application h : M —
N est un morphisme de L-structures si elle vérifie :
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— si ¢ est un symbole de constante, alors h(cM) =V ;
— si f est un symbole de fonction n-aire et a € M™ un n-uplet, alors
h(fM (@) = N (h(a)) ;

— si R est un symbole de relation n-aire, alors h(R™) ¢ RV,

Définition A.2.4. On dit que h est un plongement si ¢’est une injection qui
satisfait, pour toute relation R de L et a € M,

a € RM ssi h(a) € RV;
et un isomorphisme si c’est un plongement bijectif.

Observons que si h est un plongement alors Im A est toujours une sous-
structure de N. Dans ce cas on dit que N contient une copie isomorphe de
M ou par abus de langage que M est une sous-structure de N.

Définition A.2.5. Soient M une L-structure, T un uplet des variables et
a € M de méme longueur. On définit interprétation tMF= Q’un terme ¢
dans M a paramétres [T = a] de la fagon suivante :

— si ¢ est un symbole de constante, alors ¢MP=al = M .
. . _ Miz=a] __
— si x; est une variable de 7, alors z; =a;;
— si f est un symbole de fonction n-aire et t1,...,t, sont des termes,
alors f(tla s 7tn)M[f:a] = fM(t.{Vl[x:a}? s )té\/t[az:a])'

Définition A.2.6. Soient M une L-structure, ¢ une L-formule, z un uplet
des variables et @ € M de méme longueur. On définit la satisfaction M[z =
a] = ¢ (lisons M est un modéle de ¢ a paramétres [z = a]) de ¢ a paramétres
[Z = @] par récurrence :
— si @ est la formule atomique R(%), alors M[Z = a] = ¢ ssi (#MP=7]) €
RM:
— si g est 9, alors Mz =al = ¢ ssi Mz =a|Ey;
— sipest A, alors M[Z = a] | pssi Mz = a] = ¢ et M[T
— sipest VO, alors M[T = al] | ¢ ssi M[Z = al =1 ou M|
0;
— si ¢ est Jyyp, alors M[T = a] = ¢ ss'il existe un m € M tel que
M[:E,y = a7m] E s
— si @ est Yy, alors M[Z = a] = ¢ ssi M|[Z,y = a, m] = ¢ pour tout
m € M.

al =0

:a] |:

8l

Observons que la satisfaction d’un énoncé ne dépend pas des parameétres.
En effet les paramétres ne jouent un roéle dans la satisfaction d’une formule
que s’ils interprétent des variables libres. On va donc désigner une formule
¢ dont les variables libres sont parmi & par ¢(Z), et noter plus légérement

M([z = a] = ¢ par M |= ¢(a).

Définition A.2.7. Soient M et N des L-structures. M et N sont dites
élémentairement équivalentes, M = N, ssi elles satisfont les mémes énoncés.
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Définition A.2.8. Un ensemble T de L-énoncés s’appelle une L-théorie.
Soit M une L-structure. M est un modeéle de T, indiqué par M =T, si elle
satisfait tout énoncé de T. Une théorie ayant un modéle est dite satisfaisable.
De plus, on définit la théorie compléte de M par

Th(M) ={p: M ¢}.

Proposition A.2.1. Soit £ un langage du cardinal ||L|| = k. 1l eziste au
maximum 2% L-structures de cardinal k & isomorphisme prés.

Démonstration. Soit E un ensemble de cardinal . Il existe x fagons d’in-
terpréter une constante, 2 facon d’interpréter une relation une-aire et il
existe 28" = 2~ fagons d’interpréter une relation binaire etc. Donc il y a au
maximum 2% L-structures sur F. O

On conclut d’aprés la proposition comme ||L4]| = Np, il existe au
maximum 280 £ 4-structures dénombrables & isomorphisme prés.

A.3 Syntaxe de la logique du premier ordre 11

Définition A.3.1. Soient T une L-théorie et ¢ une L-formule. Une preuve
formelle de ¢ dans T est une suite finie des formule ¢q,...,p, = @ telle
que : pour tout ¢ < n,
— ; est dans T ou;
w; est un aziome de logique ou;
— les tautologies;
— les axiomes de 'égalité ;
— l'axiome du quantificateur existentiel.
@i est obtenue par Modus Ponens a partir des ¢;, ¢, pour j, k < 1
ou;
— (; est obtenue par 3-introduction & partir d’'une ¢; pour j < i.

S’il existe une preuve formelle de ¢ dans T on I'indique par T F .

Définition A.3.2. Une L-théorie T est dite cohérente ss’il n’existe aucun
L-énoncé ¢ tel que TH et TH —p.

Définition A.3.3. Soit T une L£-théorie. La théorie T' D T est une complé-
tion de T si elle est une L-théorie maximale cohérente.

Théoréme A.3.1 (Théoréme de Lindenbaum). [CK73, p. 26] Pour un lan-
gage L, toute L-théorie cohérente T a une complétion. U
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