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Introduction

L’axiomatisation de l’arithmétique est proposée par Giuseppe Peano dans
son Arithmetices principia nova methodo exposita [Pea89] publié en 1889 et
indépendamment par Richard Dedekind dans son Was ist und was sollen
die zahlen ? [Ded93] publié en 1888. Ce système d’axiomes (l’axiomatique de
l’arithmétique dans la logique du deuxième ordre : PA2 ) contient la formali-
sation de la récurrence dans la logique du deuxième ordre. Grâce à la grande
puissance expressive de la logique du deuxième ordre, cette axiomatisation
ne décrit qu’un seul objet : N.

La logique du premier ordre est moins expressive que la logique du
deuxième ordre. L’axiomatique de l’arithmétique dans la logique du premier
ordre (PA1) est donc très loin de définir un unique objet. Les modèles de
PA1 différents de N s’appellent les modèles non standard de l’arithmétique
de Peano du premier ordre. Les modèles non standard de PA1 sont proposés
par Thoralf Skolem dans ses articles [Sko33] et [Sko34]. En particulier, il
montre que N a une extension finale élémentaire.

Dans ce mémoire, on va commencer par donner quelques rappels de théo-
rie des modèles qui sont essentiels pour la suite du texte. Ensuite on va définir
l’axiomatique de Peano et étudier certaines de ses propriétés. Finalement on
va se concentrer sur les extensions de modèles de PA1. On va examiner les
conditions de transfert de la vérité dans les extensions. Dans ce contexte les
deux résultats suivants vont être essentiels :

— Le théorème de Robert MacDowell et Ernst Specker [MS61] est une
amélioration du résultat de Skolem qui montre que tout modèle de
PA1 a une extension finale élémentaire.

— Le théorème de Haim Gaifman [Gai72],[Gai76].
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Chapitre 1

Rappels de théorie des modèles

On attend que le lecteur connaisse les notions suivantes :
— logique du premier ordre,
— théorie,
— satisfaction,
— modèle,
— cohérence,
— satisfaisabilité etc.

Dans l’annexe A, il y a un rappel général de la logique du premier ordre
couvrant les définitions des notions ci-dessus.

Dans la suite du texte, on va se concentrer sur le langage du premier ordre
particulier LA = {0, s,+, ·}. On l’appellera le langage de l’arithmétique de
Peano du premier ordre. Au lieu de l’ajouter à LA, on pourra par la suite
définir la relation d’ordre et la soustraction de la façon suivante :

x ≤ y par ∃z y = x+ z ;
x− y par y ≤ x ∧ ∃z z + y = x.

On n’a pas l’intention de définir ce qu’est, ou doit être, la théorie des
modèles, néanmoins on peut la voir comme l’étude des propriétés de la défi-
nissabilité.

Définition 1.0.1. SoitM une L-structure et E une sous-partie deMn pour
n ∈ N. E est définissable s’il existe une L-formule ϕ(x1, . . . , xn) telle que :

E = {(a1, . . . , an) ∈Mn :M |= ϕ(a1, . . . , an)}.

1.1 Quelques résultats fondamentaux de théorie des
modèles

On rappelle explicitement que |= est utilisé comme le symbole d’impli-
cation sémantique et ` comme le symbole d’implication syntaxique. Leur
relation en logique du premier ordre est donnée par le théorème ci-dessous.
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Théorème 1.1.1 (Théorème de complétude de Gödel). [Cha15, p. 42] Soient
T une L-théorie du premier ordre et ϕ un L-énoncé. Alors, T ` ϕ ssi : pour
tout modèleM |= T, on aM |= ϕ. �

Théorème 1.1.2 (Compacité). Soit T une L-théorie du premier ordre. T
est satisfaisable ssi toute partie S ⊆ T finie est satisfaisable.

Démonstration. Si T est finiment satisfaisable alors elle est cohérente. Comme
elle est cohérent, selon le théorème de complétude, elle est satisfaisable.

Définition 1.1.1. Soient N une L-structure etM⊆ N une sous-structure.
M est une sous-structure élémentaire de N , noté parM� N , si pour toute
formule ϕ(x̄) et tout ā ∈M :

M |= ϕ(ā) ssi N |= ϕ(ā).

D’après la définition on voit immédiatement que siM� N alorsM≡ N .
La réciproque n’est pas toujours vraie.

Contre-exemple 1.1.1. Le langage du premier ordre L< = {<} s’appelle le
langage des ordres. Soient N+ l’ensemble des entiers positifs, M = (N+, <)
et N = (N, <) des L<-structures où la relation < est interprétée comme
usuel.M est une sous-structure de N .

Observons queM est isomorphe à N . DoncM≡ N . En revanche, pour
la L<-formule

ϕ(x) : ∀y x < y ∨ x = y

à paramètre [x = 1], on aM |= ϕ(1) mais N 2 ϕ(1). DoncM n’est pas une
sous-structure élémentaire de N .

Pour le langage de l’arithmétique LA, les entiers sont « codés en dur »
dans l’ensemble des termes TermLA de la façon suivante :

Notation 1.1.2. Pour n ∈ N, soit n := sn(0) ∈ TermLA .

D’après la définition on observe que pour chaque LA-formule à para-
mètres dans N, il existe un énoncé qui lui est équivalent dans toute extension
de N.

Proposition 1.1.1. SoitM une LA-structure. Alors N �M ssi N ≡M.

Démonstration. Supposons que ϕ(x̄) une LA-formule et ā ∈ N. D’après l’ob-
servation, on a [N |= ϕ(ā) ssiM |= ϕ(ā)] ssi N ≡M.

Théorème 1.1.3 (Théorème de Löwenheim-Skolem ascendant). [Kay91, p.
4] SoientM une L-structure infinie et κ un cardinal. AlorsM a une exten-
sion élémentaire de cardinal λ ≥ κ. �
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Théorème 1.1.4 (Théorème de Löwenheim-Skolem descendant). [Kay91,
p. 4] Soient ‖L‖ = λ ≥ ℵ0 et N une L-structure de cardinal κ > λ. Alors il
existe une sous-structure élémentaireM� N avec |M| = λ. �

Théorème 1.1.5 (Teste de Tarski-Vaught). [Kay91, p. 4] Soient M ⊆ N
des L-structures. Alors les propriétés suivantes sont équivalentes :

— M� N ;
— pour toute L-formule ϕ(x̄, y) et pour tout ā ∈M,

si N |= ∃yϕ(ā, y), alors il existe b ∈M tel que N |= ϕ(ā, b). �

1.2 Logique du deuxième ordre

Dans la logique du premier ordre (voir l’annexe A), les variables ne
peuvent décrire que les éléments d’une structure. Donc on ne quantifie que
sur les éléments. En revanche, la quantification sur les sous-ensembles, fonc-
tions ou relations d’une structure est « naturelle » en mathématiques. Ceci
peut a priori suggérer d’étendre la logique.

Définition 1.2.1. Un langage du deuxième ordre se définit en ajoutant les
symboles :

— k-aires symboles de constantes d’ensembles (prédicats) P ki , pour tout
k ≥ 1 ;

— k-aires variables d’ensembles (prédicats) Xk
i , pour tout k ≥ 1 ;

— quantificateurs

E

et

A

à la liste de symboles du premier ordre.

Ces nouveaux quantificateurs parcourent les sous-ensembles. On donne
quelques exemples d’énoncés du deuxième ordre.

Exemple 1.2.1 (Bon ordre). Un ordre total (E,≤) est un bon ordre, si toute
partie non vide de E possède un élément minimal.

On peut formaliser ceci par la formule de la logique du deuxième ordre :

A

S ∃xS(x)→ [∃x∀yS(x) ∧ S(y)→ x ≤ y].

Exemple 1.2.2 (Axiome de la borne supérieure). Toute partie S non-vide
et bornée de l’ensemble des nombres réels R possède une borne supérieure
dans R.

On peut formaliser ceci par la formule de la logique du deuxième ordre :

A

S [∃xS(x) ∧ (∃y∀xS(x))→ x ≤ y]

→ [(∃z∀x(S(x))→ x ≤ z ∧ ∀y∀xS(x)→ (x ≤ y → z ≤ y)]

On définit la syntaxe de la logique du deuxième ordre de façon similaire
à la syntaxe de la logique du premier ordre. [van04, p. 143] Dans le mémoire,
on ne s’intéresse pas à la théorie de la démonstration de la logique du second

6



ordre. La raison de ceci surtout est que d’après le contre-exemple 2.1.1 ;
la compacité n’est pas valide pour la logique du deuxième ordre. Donc la
complétude non plus.

1.3 Incomplétude

« Lorsqu’il s’agit de poser les principes fondamentaux d’une science, l’on
doit établir un système d’axiomes renfermant une description complète et
exacte des relations entre les concepts élémentaires de cette science. » [Hil02,
p. 14]

Théorème 1.3.1 (Théorème d’incomplétude de Gödel). Soit T une LA-
théorie récursivement axiomatisable et cohérente qui étend PA1 (définition
2.1.2). Alors il existe un énoncé ϕ tel que ni T ` ϕ, ni T ` ¬ϕ. �

Le théorème d’incomplétude utilise l’arithmétique de Peano (PA1) définie
dans le chapitre 2. On préfère mettre ensemble tous les rappels.

Clairement PA1 n’est pas complète d’après le théorème d’incomplétude.
De plus pour chaque LA-énoncé ϕ, on a soit ϕ ∈ Th(N) soit ϕ 6∈ Th(N).
Donc d’après le théorème A.3.3, Th(N) ne peut pas être donnée par une
LA-théorie récursivement axiomatisable.

Comme dans la suite du texte on en aura peu besoin, on ne donne pas
de détails (voire [Kay91, ch. 0 et 3]) sur la théorie de la calculabilité, codage
de Gödel etc.

Définition 1.3.1. Soient f : Nk → N une fonction totale et T ⊇ PA1 une
LA-théorie. f est représentée dans T, s’il existe une LA-formule ϕ(x1, . . . , xk, y)
telle que, pour tout n̄ ∈ Nk :

T ` ∃!yϕ(n̄, y)

et

si k = f(n̄) alors T ` ϕ(n̄, k).

Théorème 1.3.2. [Kay91, p.36] Soit f : Nk → N récursive. Alors f est
représentée dans PA1. �

Exemple 1.3.1. L’exponentiation (x, y) 7→ xy est récursive. Donc il existe
une formule qui la représente dans PA1.
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Chapitre 2

Axiomatique de Peano

L’axiomatisation de l’arithmétique est proposé par Giuseppe Peano [Pea89]
et indépendamment par Richard Dedekind [Ded93].

2.1 Arithmétique de Peano

On commence par décrire le comportement de N en tant que LA-structure.
La liste ne sera complète qu’avec la formalisation de la récurrence.

Théorie du successeur. Elle est donnée par les axiomes :

S1 ∀x sx 6= 0 ;

S2 ∀x x 6= 0→ ∃y x = sy ;

S3 ∀x∀y sx = sy → x = y.

Soit M un modèle de la théorie du successeur. Pour x ∈ M on définit
l’orbite de x comme l’ensemble de tous ses successeurs et prédécesseurs.M
contient l’orbite de 0 c’est à dire 0, s0, . . . , sn0, . . . qui est une copie de (N, s).
Les autres orbites peuvent être soit des cycles finis, soit des copies de (Z, s).
Soit R un ensemble de représentants des orbites de M ; on a bien

M =
⊔
x∈R

[x].

Théorie de l’addition. Elle est donnée par les axiomes :

A1 ∀x 0 + x = x ;

A2 ∀x∀y x+ sy = s(x+ y).
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Théorie de la multiplication. Elle est donnée par les axiomes :
M1 ∀x 0 · x = 0 ;
M2 ∀x∀y x · s(y) = x · y + x.
L’addition (et la multiplication) de N est associative et commutative

mais ce n’est pas évident a priori de la théorie ci-dessus : les propriétés
algébriques attendues pourront être démontrées par récurrence une fois celle-
ci axiomatisée.

Arithmétique de Peano du deuxième ordre

Définition 2.1.1. La théorie de l’arithmétique de Peano du deuxième ordre
(PA2) est formée des axiomes précédents et de l’énoncé du deuxième ordre :

R2

A

p [p(0) ∧ ∀x(p(x)→ p(sx))]→ ∀x p(x).

Le symbole

A

désigne la quantification du deuxième ordre, i.e. la quan-
tification sur les propriétés ; R2 est une formule de la logique du deuxième
ordre. Manifestement N est un modèle de PA2.

On peut également reformuler R2 en termes de sous-ensembles sous la
forme :

R2

A

S ⊂M [0 ∈ S ∧ ∀x( x ∈ S → sx ∈ S)]→ S = M .

Proposition 2.1.1. Tout LA-modèle de PA2 est isomorphe à N.

Démonstration. Soit M un modèle de PA2. Définissons l’application f :
N→M par 0 7→ 0M et n 7→ sn0M. Alors f est un morphisme car 0 7→ 0M,
f(sx) = sf(x), f(x+ y) = f(x) + f(y) et f(x · y) = f(x) · f(y).

Supposons n ≤ m et sn0 = sm0. D’après l’injectivité du successeur on
a sm−n(0) = 0. Or, 0 n’est pas un successeur. Donc n = m et f est bien
injective.

De plus 0 ∈ Im f et pour tout x ∈ Im f on a sx ∈ Im f . Par R2, Im f =
M. Donc f est surjective.

À première vue il peut sembler qu’il ne reste plus rien à découvrir dans
l’arithmétique de Peano, puisque l’on a trouvé une LA-théorie catégorique.
Néanmoins travailler sur une théorie du deuxième ordre a des désavantages.
Par exemple ; le théorème de complétude n’est pas valide pour la logique du
deuxième ordre (conséquence du résultat célèbre de Gödel : les théorèmes
d’incomplétude), ni le théorème de compacité.

Contre-exemple 2.1.1. Considérons la théorie T = PA2 ∪ {c > k}k∈N.
Toute sous-théorie finie de T est contenu dans Tn = PA2 ∪ {c > k}k<n pour
un n ∈ N. Or (N, n) |= Tn. Donc la théorie est finiment satisfaisable. En
revanche, comme N ne possède aucun « élément infini » on a N 2 T. Or,
d’après la proposition 2.1.1, N était le seul candidat. En conclusion, T n’est
pas satisfaisable bien que toutes ses sous-théories finies le soient.
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Arithmétique de Peano du premier ordre

Définition 2.1.2. L’arithmétique de Peano du premier ordre (PA1) est for-
mulée par la théorie du successeur, la théorie de l’addition, la théorie de la
multiplication et le schéma d’axiome de récurrence

R1 Pour toute formule p ∈ FormLA :
[p(0) ∧ ∀x( p(x)→ p(sx))]→ ∀x p(x).

Clairement PA1 est satisfaite par N. On l’appellera le modèle standard.
Tous les autres s’appellent non standard.

Avant d’avancer vers des sujets plus intéressants on donne quelques exemples
de démonstrations de propriétés algébriques attendues.

Proposition 2.1.2. PA1 |= ∀x∀y∀z (z + y) + x = z + (y + x).

Démonstration. Soient M |= PA1 et p(x) la formule ∀y∀z (z + y) + x =
z + (y + x). Raisonnons par récurrence sur x. Soit x = 0. Par l’axiome A1
on a M |= ∀y∀z (z + y) + 0 = z + (y + 0). Ainsi M |= p(0). Supposons
M |= p(x) i.e. M |= ∀y∀z (z + y) + x = z + (y + x) pour un x ∈ M. Par
l’hypothèse de récurrence et A2, M |= (z + y) + sx = s((z + y) + x) =
s(z+(y+x)) = (z+s(y+x)) = z+(y+sx) pour tout y, z ∈M. D’après R1
on aM |= ∀x∀y∀z (z+y)+x = z+(y+x). Donc PA1 |= ∀x∀y∀z (z+y)+x =
z + (y + x).

Proposition 2.1.3. PA1 |= ∀x 0 + x = x+ 0.

Démonstration. SoientM |= PA1 et p(x) la formule 0+x = x+0. Raisonnons
par récurrence sur x. Soit x = 0. Par l’axiome A1 on aM |= 0+0 = 0. Ainsi
M |= p(0). À présent supposons M |= p(x) i.e. M |= 0 + x = x + 0 pour
un x ∈ M. Par A1,M |= 0 + x = x+ 0 = x. Par l’hypothèse de récurrence
M |= s(0 + x) = sx etM |= s(x + 0) = sx. DoncM |= p(sx). D’après R1
on aM |= ∀x 0 + x = x+ 0. Donc PA1 |= ∀x 0 + x = x+ 0.

Proposition 2.1.4. PA1 |= ∀x s0 + x = sx.

Démonstration. SoientM |= PA1 et p(x) la formule s0+x = sx. Raisonnons
par récurrence sur x.Soit x = 0. Par l’axiome A1 on aMmodelss0 + 0 = s0.
Supposons M |= p(x) i.e. M |= s0 + x = sx pour un x ∈ M. Par A2,
M |= s0 + sx = s(s0 + x). Par l’hypothèse de récurrenceM |= s(s0 + x) =
s(sx). Donc M |= p(sx). D’après R1 on a M |= ∀xs0 + x = sx. Donc
PA1 |= ∀x s0 + x = sx.

Proposition 2.1.5. PA1 |= ∀x∀y x+ y = y + x.

Démonstration. Soient M |= PA1 et p(x) la formule ∀y x + y = y + x.
Raisonnons par récurrence sur x. Soit x = 0. D’après la proposition 2.1.3 on
a M |= p(0). Supposons M |= p(x) i.e. M |= ∀y x + y = y + x pour un
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x ∈ M. Donc, M |= x + y = y + x pour tout y ∈ M. Par les propositions
2.1.2, 2.1 et A2,M |= sx+ y = s(x+ 0) + y = (x+ s0) + y = x+ (s0 + y) =
x+(y+s0) = (x+y)+s0 = (y+x)+s0 = y+(x+s0) = y+s(x+0) = y+sx
pour tout y ∈ M. D’après R1 on a M |= ∀x∀y x + y = y + x. Donc
PA1 |= ∀x∀y x+ y = y + x.

Le reste des propriétés algébriques attendues peut être démontré d’une
manière similaire. [Ded93]

Soit ϕ(x, ȳ) une LA-formule. On propose l’énoncé Lxϕ :

∀ȳ∃xϕ(x, ȳ)→ ∃z(ϕ(z, ȳ) ∧ ∀w < z¬ϕ(w, ȳ)).

Théorème 2.1.1 (Schéma de minimisation). [Kay91, p. 45] PA1 ` Lxϕ
pour toute LA-formule ϕ. �

Construction d’un modèle non standard

Comme N est de cardinal ℵ0, d’après le théorème de Löwenheim-Skolem
(ascendant), il existe des modèles de cardinal quelconque de PA1. Par cet ar-
gument on voit immédiatement que PA1 a plusieurs modèles non isomorphes.
Tout modèle de PA1 non isomorphe à N est dit non standard. Est-ce qu’on
peut en « construire » un ?

On étend LA en ajoutant un nouveau symbole de constante c et on le
note Lc. Considérons la Lc-théorie

T = PA1 ∪ {n < c}n∈N

où n désigne le terme sn(0) comme à la notation 1.1.2.
Toute sous-théorie finie de T est contenue dans

Tk = PA1 ∪ {n < c : n < k}

pour un k ∈ N. Manifestement (N, k) |= Tk. D’après le théorème de com-
pacité, T = ∪kTk est satisfaisable, i.e. il existe un Lc-modèle M de T.
Une Lc-structure est forcément une LA-structure en oubliant le symbole de
constante supplémentaire c. En particulier on a M |= n < c pour tout
n ∈ N. Donc l’interprétation de cM n’est pas un « entier ». On conclut que
les LA-structures N etM ne peuvent pas être isomorphes.

Observons que si l’on considère la Lc-théorie

T = Th(N) ∪ {n < c}n∈N,

on peut montrer la cohérence de T, i.e. il existe une Lc-structure M |=
T, en appliquant le même raisonnement. Comme M |= Th(N), d’après la
proposition 1.1.1, on conclut qu’il existe une extension élémentaire N � M
non standard.
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Le plongement canonique

Si M |= PA1 on définit le plongement canonique f : N → M par n 7→
sn0M. Elle est clairement bien définie et injective. En outre l’application f
est un plongement de LA-structures.

Donc tout modèle de PA1 contient une copie de N ou par abus de langage
N est une sous-structure de tout modèle de PA1. Tout élément x ∈M \ Im f
est dit non standard. On conclut tautologiquement qu’un modèle de PA1 est
non standard s’il contient des éléments non standard.

2.2 Structure d’ordre

À partir de la relation d’ordre usuel sur N, on va définir un ordre sur
tous les modèles de PA1.

Définition 2.2.1. Soit E un ensemble. La relation < est un ordre sur E si
la L<-structure (voir le contre-exemple 1.1.1) (E,<) vérifie les axiomes :

O1 ∀x ¬x < x (non réflexivité) ;
O2 ∀x∀y∀z [(x < y ∧ y < z)→ x < z] (transitivité).

Définition 2.2.2. Un ordre (E,<) est appelé total (ou linéaire) s’il vérifie
l’axiome :

O3 ∀x∀y [(x < y) ∨ (x = y) ∨ (y < x)] (totalité).

L’abréviation x ≤ y désigne (x < y) ∨ (x = y).
SoitM |= PA1 une LA-structure. On définit la relation « < » surM de

la façon suivante :

x < y ssi ∃z (z 6= 0) ∧ (x+ z = y).

On peut démontrer par récurrence queM |= {O1,O2,O3}. Donc on peut
désormais voir M comme une L<-structure et on se permet d’employer le
symbole non logique < dans les formules. En outre commeM est un modèle
arbitraire de PA1, on conclut que PA1 ` {O1,O2,O3}.

PA1 implique aussi les propriétés suivantes :
OA ∀x∀y∀z (x < y → x+ z < y + z) ;
OM ∀x∀y∀z (0 < z ∧ x < y → x · z < y · z)

qui décrivent + et · par rapport à l’ordre. Ceci peut être démonté par récur-
rence.

Définition 2.2.3. SoitM un modèle de PA1. On définit la soustraction sur
M de la façon suivante :

a− b :=

{
0 siM |= a ≤ b

c ∈M tel queM |= b+ c = a siM |= a > b.

Définition 2.2.4. Un ordre est appelé discret à plus petit élément 0 s’il
vérifie les axiomes :

12



OD1 ∀x∃y∀z x ≤ y ∧ (x < z → y ≤ z) ;
OD2 ∀x 0 ≤ x ;
OD3 ∀x∃y∀z x 6= 0→ y ≤ x ∧ (z < x→ z ≤ y).

On vérifie par récurrence que l’ordre défini sur les modèles de PA1 est
discret à plus petit élément 0. À présent on étudie quelques propriétés élé-
mentaires de l’ordre dans un modèle de PA1.

Proposition 2.2.1. PA1 ` ∀x∀y (y > x→ y ≥ x+ 1).

Démonstration. Soit M |= PA1. Supposons M |= y > x pour x, y ∈ M.
Alors par définition de l’ordre sur M, il existe z ∈ M tel que z 6= 0 et
y = x+ z.

On étudie d’abord le cas pour x = 0. Supposons queM |= y > 0→ y ≥ 1
etM |= y+ 1 > 0 pour y ∈M. AlorsM |= y+ 1 ≥ 1 (sinonM |= y+ 1 < 1
ss’il existe z ∈M tel que z > 0 et y + 1 + z = 1 dansM ssi y + z = 0 dans
M qui est absurde). Par récurrence on aM |= ∀y (y > 0→ y ≥ 1).

Donc z ≥ 1 dans M. Par OA y = z + x ≥ x + 1 dans M. Alors M |=
∀x∀y (y > x→ y ≥ x+ 1).

Proposition 2.2.2. SoientM un modèle de PA1 et pour n ∈ N la formule :

ϕn : ∀x x ≤ n→ x = 0 ∨ · · · ∨ x = n.

AlorsM |= ϕn pour tout n ∈ N.
Démonstration. SoitM |= PA1. Raisonnons par récurrence sur n. Pour n =
0 on a M |= ϕ0 par OD2. Supposons M |= ϕn i.e. M |= ∀x x ≤ n → x =
0 ∨ · · · ∨ x = n. Alors M |= ∀x(x ≤ n+ 1 → x ≤ n ∨ x = n+ 1) par la
proposition 2.2.1. Donc M |= ∀x x ≤ n+ 1 → x = 0 ∨ · · · ∨ x = n ∨ x =
n+ 1.

Définition 2.2.5. SoientM et N des L-structures. N est appelée une ex-
tension finale deM (ou égalementM est appelée une sous-structure initiale
de N ), désigné parM⊆f N ssiM⊆ N et pour tous m,n ∈ N :

si N |= n < m et m ∈M, alors n ∈M.

Théorème 2.2.1. SoitM |= PA1. Alors N ⊆f M.

Démonstration. Soit h : N → M le plongement canonique (voir 2.1) défini
par n 7→ nM. D’après la proposition 2.2.2,

Im(h) = {nM : n ∈ N} ⊆f M.

N M

Le dessin ci-dessus est donc approprié pour imaginer un modèle non standard
de PA1.
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2.3 Nombre de complétions de PA1

Théorème 2.3.1. Soit T ⊇ PA1 une LA-théorie récursivement axiomati-
sable et cohérente. Alors T a 2ℵ0 complétions.

T∅

T0 T1

T00 T01 T10 T11

Démonstration. Soit T ⊇ PA1 une théorie récursive et cohérente. D’après
le théorème A.3.3, il existe un énoncé ϕT tel que T ∪ {ϕT} et T ∪ {¬ϕT}
sont cohérentes. Soit sn une suite finie de 0 et 1 où n décrit sa longueur. On
axiomatise l’extension récursive Tsn de T par récurrence :

— T∅ = T ;
— Tsn0 = T ∪ {¬ϕTsn

} ;
— Tsn1 = T ∪ {ϕTsn

}.
Tsn est une extension finie de T pour tout n ∈ N. Par construction elle est
cohérente.

Soit s : N → {0, 1} une suite. On définit la théorie récursive Ts =⋃
n∈N Tsn . Donc Ts est cohérente par construction. De plus elle est contenue

dans une complétion de T.(voir le théorème A.3.1).
Observons que cette extension récursive peut être représentée par un

arbre comme au dessus. Donc, chaque complétion correspond à une « branche »
de l’arbre. Le cardinal de branches de l’arbre est bien 2ℵ0 .

Donc Th(N) n’est que l’une des 2ℵ0 complétions de PA1.
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Chapitre 3

Extensions de modèles

3.1 Le nombre d’extensions élémentaires dénom-
brables de N

On a déjà montré qu’il existe un infinité de modèles non isomorphes de
PA1 avec un argument sur le cardinal. En revanche on peut vouloir se limiter
aux modèles dénombrables en espérant démontrer un résultat d’unicité.

D’après la proposition A.2.1, il existe « au plus » 2ℵ0 modèles dénom-
brables de PA1 à isomorphisme près. Donc il existe « au plus » 2ℵ0 extensions
élémentaires dénombrables de N à isomorphisme près.

Théorème 3.1.1. Il y a 2ℵ0 extensions élémentaires dénombrables de N à
isomorphisme près.

Démonstration. Soient P l’ensemble des nombres premiers et S ⊂ P. Consi-
dérons la théorie

TS = Th(N) ∪ {∃x p · x = c}p∈S ∪ {∀x p · x 6= c}p 6∈S .

Toute partie finie de TS est contenue dans

Tn = Th(N) ∪ {∃x p · x = c}p∈S∧p<n ∪ {∀x p · x 6= c}p6∈S∧p<n

pour un n ∈ N. Soit q =
∏
p∈S∧p<n p ; alors (N, q) |= Tn. D’après le théorème

de compacité, TS est satisfaisable. Soit NS un modèle de TS . D’après le théo-
rème de Löwenheim-Skolem (descendant) il existe un modèle dénombrable
MS � NS de TS .
P(P) désigne l’ensemble des parties des entiers premiers etModℵ0(Th(N))

désigne l’ensemble des extensions élémentaires dénombrables de N à isomor-
phisme près. On définit l’application

f : P(P)→ Modℵ0(Th(N))

S 7→ MS
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oùMS est un modèle dénombrable de TS .
Observons que pour un S ⊆ P fixé, f(S) =MS peut être un modèle de

TS′ où S 6= S′ ⊆ P. Définissons la relation ∼ sur P(S) par :

S ∼ S′ ssi f(S) = f(S′).

Ceci est une relation d’équivalence.
Soit M ∈ Modℵ0(Th(N)), alors il peut être un modèle de TS pour au

maximum ℵ0 parties S ∈ P(P), i.e. la classe d’équivalence f−1(M) contient
au maximum ℵ0 sous-ensembles de P. Or le cardinal de P(P) est 2ℵ0 . Donc
le cardinal de l’ensemble de classes d’équivalence P(P)/ ∼ est supérieur ou
égal à 2ℵ0 . Comme l’application

f̃ : P(P)/ ∼ → Modℵ0(Th(N))

[S] 7→ MS

est une injection, il existe au moins 2ℵ0 modèles dénombrables de Th(N).

Corollaire 3.1.1.1. Il existe 2ℵ0 modèles dénombrables de PA1 à isomor-
phisme près. �

3.2 Hiérarchie arithmétique

On va définir certaines classes de LA-formules. Ensuite on va étudier leurs
conditions du transfert de la vérité pour les LA-structures.

Définition 3.2.1. Soit t un LA-terme. Un quantificateur est borné s’il est
de la forme :

— ∃x(x < t ∧ · · · ) ;
— ∀x(x < t→ · · · ).

On emploie respectivement les abréviations ∃x < t(· · · ) et ∀x < t(· · · ).

Définition 3.2.2. Une LA-formule ϕ(x̄) est de classe ∆0, si elle est équiva-
lente à une formule dans laquelle tout quantificateur est borné.

Définition 3.2.3. Une LA-formule ϕ(x̄) est de classe Σ1, si elle est équiva-
lente à une formule de la forme ∃ȳψ(x̄, ȳ) avec ψ(x̄, ȳ) ∈ ∆0.

Définition 3.2.4. Une LA-formule ϕ(x̄) est de classe Π1, si elle est équiva-
lente à une formule de la forme ∀ȳψ(x̄, ȳ) avec ψ(x̄, ȳ) ∈ ∆0.

Observons que Σ1 et Π1 sont stables par ∧ et ∨. Par exemple : soit
∃yϕ1(x̄, y) et ∃yϕ2(x̄, y) de Σ1. Alors leur disjonction, qui équivaut à ∃y∃zϕ1(x̄, y)∨
ϕ2(x̄, z), l’est aussi. De plus, la négation d’une formule Σ1 est Π1 et la réci-
proque est aussi vraie.
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Définition 3.2.5. Soient M ⊆ N des LA-structures et Γ un ensemble de
LA-formules.M est une sous-structure Γ-élémentaire de N , notéM�Γ N
si pour tout ā ∈M et ϕ(x̄) ∈ Γ ;

M |= ϕ(ā) ssi N |= ϕ(ā).

SiM�Γ N alors Γ est dit absolu pour l’extensionM⊆ N .

Théorème 3.2.1. SoientM et N des LA-structures. Si N est une extension
finale deM, alorsM�∆0 N .

Démonstration. Raisonnons par récurrence sur la complexité des ∆0-formules.
Une LA-formule atomique (i.e. une formule de complexité n = 0) est de

forme t(x̄) = t′(x̄) pour t, t′ ∈ TermLA . Donc clairement M |= t(ā) = t′(ā)
ssi N |= t(ā) = t′(ā) pour ā ∈M.

Faisons l’hypothèse de récurrence : pour toute ϕ(x̄) ∈ ∆0 de complexité
inférieure ou égale à n et pour tout ā ∈M,

M |= ϕ(ā) ssi N |= ϕ(ā). (?)

Supposons que ϕ(x̄) est ϕ1(x̄)∧ϕ2(x̄), de complexité n+1. Pour ā ∈M,

M |= ϕ(ā) ssiM |= ϕ1(ā) etM |= ϕ2(ā)

par (?) ssi N |= ϕ1(ā) et N |= ϕ2(ā)

ssi N |= ϕ(ā).

Les cas où ϕ(x̄) est ϕ1(x̄) ∨ ϕ2(x̄) ou ¬ϕ1(x̄) de complexité n + 1 sont
montrés par des arguments similaires.

Supposons que ϕ(x̄) est ∃y < t(x̄)ϕ1(x̄, y), de complexité n + 1. Pour
ā ∈ M, on aM |= ϕ(ā) ss’il existe b < t(ā) ∈ M tel queM |= ϕ1(ā, b). Or
commeM⊆f N et t(ā) ∈M,

{b ∈M :M |= b < t(ā)} = {b ∈ N : N |= b < t(ā)}.

Donc par (?),

M |= ϕ(ā) ss’il existe b < t(ā) ∈ N tel que N |= ϕ1(ā, b)

ssi N |= ϕ(ā).

Le cas ϕ(x̄) est ∀y < t(x̄)ϕ1(x̄, y) de complexité n+ 1 est montré par un
argument similaire.

Corollaire 3.2.1.1. SoientM⊆f N une extension finale de LA-structures
et ϕ(x̄), ψ(x̄) des LA-formules avec ϕ(x̄) ∈ Σ1 et ψ(x̄) ∈ Π1. Alors pour tout
ā ∈M :

1. siM |= ϕ(ā), alors N |= ϕ(ā) ;

17



2. si N |= ψ(ā), alorsM |= ψ(ā).

Démonstration. Soient ϕ(x̄) équivalent à la Σ1-formule ∃yϕ1(x̄, y) avec ϕ1 ∈
∆0 et ā ∈M. Supposons queM |= ϕ(ā). Alors il existe b ∈M tel queM |=
ϕ1(ā, b). Comme ϕ1 ∈ ∆0, d’après le théorème 3.2.1, on a N |= ϕ1(ā, b).
Donc N |= ∃yϕ1(ā, y), i.e. N |= ϕ(ā).

Soient ψ(ā) équivalent à la Π1-formule ∀yψ1(x̄, y) avec ψ1 ∈ ∆0 et ā ∈M.
Supposons que N |= ψ(ā), i.e. N |= ψ1(ā, b), pour tout b ∈ N . Comme
ψ1 ∈ ∆0, d’après le théorème 3.2.1, on a M |= ψ1(ā, b) pour tout b ∈ M.
DoncM |= ∀yϕ1(ā, y) i.e.M |= ψ(ā).

Définition 3.2.6. Une formule est Σn+1 si elle est équivalente à une formule
de la forme :

∃x̄ϕ(x̄, ȳ)

où ϕ est Πn.

Définition 3.2.7. Une formule est Πn+1 si elle est équivalente à une formule
de la forme :

∃x̄ϕ(x̄, ȳ)

où ϕ est Σn.

Définition 3.2.8. Une formule est ∆n si elle est à la fois Σn et Πn.

Toute formule de la logique du premier ordre est dans Σn ou Πn pour un
n ∈ N. Observons les inclusions Σn ⊆ ∆n ⊆ Σn+1 et Πn ⊆ ∆n ⊆ Πn+1. La
hiérarchie arithmétique peut être visualisée par le dessin ci-dessous.

. .

∆2

Σ2 Π2

∆1

Σ1 Π1

∆1

Σ0 = ∆0 = Π0

La hiérarchie arithmétique n’est pas dégénérée i.e. Σn 6= Σn+1 et Πn 6=
Πn+1 pour aucun n ∈ N.
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3.3 « Overspill »

Soient M un modèle non standard de PA1 et a ∈ M non standard.
Définissons la partie :

M<aN = {b ∈M :M |= b < an pour un n ∈ N}.

Observons queM<aN est stable sous +, ·, s. C’est donc une LA-structure.
De plusM<aN ⊆f M est une extension finale.

Par l’exemple 1.3.1, l’exponentiel z = xy est représentée dans PA1 par
une LA-formule ϕ(x, y, z). Pour tout x, y ∈ M il existe unique z ∈ M tel
queM |= ϕ(x, y, z). Alors pour a ∈ M il existe un unique élément aa ∈ M
tel queM |= ϕ(a, a, aa).

Comme a > N, on a aa > b pour tout b ∈ M<aN . Ainsi M<aN 6= M.
De même,M<aN 2 PA1. On conclut naïvement queM<aN est « trop petit »
pour satisfaire PA1.

Cette fois on définit la partie :

M<<a = {b ∈M :M |= b < aa
n
pour un n ∈ N}.

Clairement M<<a ⊆f M. Mais M<<a 2 PA1 comme a, aa ∈ M<<a mais
aa

a
>M<<a.
On peut donc trouver des segment initiaux pour M facilement en em-

ployant la stratégie ci-dessus. Néanmoins afin de construire une sous-structure
initial satisfaisant PA1 on doit changer cette perspective.

Définition 3.3.1. SoientM |= PA1 et I une partie non vide de M . Alors I
est un segment initial clos deM s’il vérifie :

— pour tout y ∈ I, si x < y, alors x ∈ I ;
— I est stable par successeur.

Proposition 3.3.1. Soient M |= PA1 non standard et I &M un segment
initial clos propre deM. Alors I n’est pas définissable.

Démonstration. Supposons par l’absurde que la LA-formule ϕ(x, ā) à para-
mètres ā ∈ M définit I & M. Comme 0 ∈ I et que I est stable sous s,
M |= ϕ(0, ā) ∧ ∀x(ϕ(x, ā) → ϕ(sx, ā)). Or M |= PA1, donc par récurrence
M |= ∀xϕ(x, ā). Donc I =M.

Théorème 3.3.1 (Overspill de Robinson). Soient M |= PA1 non standard
et I & M un segment initial clos propre de M. Supposons que ā ∈ M et
ϕ(x, ā) soit une LA-formule tels que :

M |= ϕ(b, ā) pour tout b ∈ I.

Alors il existe c > I dansM tel que :

M |= ∀x ≤ c ϕ(x, ā).

19



I c M

Démonstration. Soient ā ∈ M et ϕ(x, ȳ) une LA-formule. Supposons par
l’absurde que M |= ϕ(b, ā) pour tout b ∈ I et il n’existe aucun c > I dans
M tel queM |= ∀x ≤ c ϕ(x, ā).

Considérons la partie

E = {d ∈M :M |= ∀x < d ϕ(x, ā)}

définie par la formule ∀x < y ϕ(x, ā).
Soit b ∈ I. Alors comme I est un segment initial clos de M, pour tout

x < b dans M on a x ∈ I. Par l’hypothèse, on a M |= ϕ(x, ā) pour tout
x ∈ I. AlorsM |= ∀x < b ϕ(x, ā). Donc b ∈ E i.e. I ⊆ E.

De plus, par l’hypothèse, il n’existe aucun c > I dans M tel que M |=
∀x ≤ c ϕ(x, ā). Alors il n’existe aucun c ∈ E tel que c > I. Donc E = I.
Or comme I est un segment initial clos propre de M, c’est absurde par la
proposition 3.3.1.

3.4 Extensions finales et cofinales

Soit T une complétion de PA1. On va construire le « plus petit » modèle
de T dans la première partie de cette section. Ensuite on va appliquer les
résultats de la première partie pour montrer que tout modèle de PA1 a une
extension finale élémentaire. On va finir la section avec une discussion sur
les extensions cofinales.

Définition 3.4.1. Soient M |= PA1 et A ⊆ M. Un élément b ∈ M est
définissable dans M sur A s’il existe une LA-formule ϕ(x, ȳ) et un uplet
ā ∈ A tels que

M |= ϕ(b, ā) etM |= ∃!x ϕ(x, ā).

On note dcl(M;A) l’ensemble de tous les éléments définissables de M
sur A. Si A est vide on note simplement dcl(M).

Théorème 3.4.1. Si M |= PA1 et A ⊆ M alors A ⊆ dcl(M;A) � M.
Donc dcl(M;A) |= PA1.

Démonstration. Soit a ∈ A, alors il est définissable par la formule x = a.
Supposons x, y ∈ dcl(M;A) définis respectivement par les formules ξ(x, ā)
et ι(x, b̄) à paramètres ā, b̄ ∈ A. Alors x · y et x+ y (donc sx d’après le fait
que PA1 ` sx = x+ 1) sont définis respectivement par les formules :

— ∃u∃v ξ(u, ā) ∧ ι(v, b̄) ∧ z = u · v et ;
— ∃u∃v ξ(u, ā) ∧ ι(v, b̄) ∧ z = u+ v.
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Donc dcl(M;A) est une sous-structure deM.
On utilise le teste de Tarski-Vaught 1.1.5 pour montrer que dcl(M;A) �

M. Soit ϕ(x, ȳ) une LA-formule. Supposons M |= ∃xϕ(x, c̄) à paramètres
c̄ ∈ dcl(M;A). Soit c̄ = (c1, . . . , cn) et chaque ci est défini par la formule
ξi(x, ā) à paramètres ā ∈ A. Alors

M |= ∃x∃ȳ(
n∧
i=1

ξi(yi, ā) ∧ ϕ(x, ȳ)).

Par le schéma de minimisation nombre 2.1.1,

M |= ∃x [∃ȳ(

n∧
i=1

ξi(yi, ā) ∧ ϕ(xȳ))

∧∀z < x∀w̄(

n∧
i=1

ξi(wi, ā)→ ¬ϕ(z, w̄))].

La formule ci-dessus entre crochets définit un élément d ∈ dcl(M;A) tel que
M |= ϕ(d, c̄).

Définition 3.4.2. Soient T une complétion de PA1 et M |= T. On note
dclT = dcl(M), appelé le modèle premier de T.

Théorème 3.4.2. [Kay91, p. 92] Soient T une complétion de PA1 etM |=
T. Alors il existe un unique plongement élémentaire dclT ↪→ M. En outre
l’image du plongement est égal à dcl(M). �

Donc par le théorème 3.4.2, la définition de dclT ne dépend que de T. La
morale des corollaire suivants est que dclT est « petit ».

Corollaire 3.4.2.1. [Kay91, p. 92] Soit T une complétion de PA1. Alors
dclT est minimal i.e. il n’a pas de sous-structure élémentaire. �

Exemple 3.4.1. Pour T = Th(N) on a dclT = N comme N est une LA-
structure minimale satisfaisant T.

Définition 3.4.3. Soit T une théorie. Un type p(x̄) sur T est un ensemble
de formules ϕ(x̄) tel que la théorie

T ∪ {ϕ(c̄) : ϕ(x̄) ∈ p(x̄)}

(où c̄ est un uplet de nouvelles constantes) est cohérente.
Le type p(x̄) est ;
— complet, si la théorie T ∪ p(x̄) est complet ;
— principal, s’il existe une formule ψ(x̄) telle que T ∪ p(x̄) ` ψ(x̄) et

T ` ∀x̄(ψ(x̄)→ ϕ(x̄)) pour toute ϕ(x̄) ∈ p(x̄) ;
— réalisé dans un modèleM |= T, s’il existe ā ∈ M tel queM |= ϕ(ā)

pour toute ϕ(x̄) ∈ p(x̄) ; sinon on dit queM omet p(x̄).
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Observons que d’après le théorème de complétude, si p(x̄) est un type
sur T, alors il existe un modèleM |= T qui réalise p(x̄).

Corollaire 3.4.2.2 (Omission des types). Soient LC une expansion de LA
obtenue ajoutant un ensemble C de constantes et T ⊇ PA1 une LC-théorie
complète. Alors il existe un modèle K de T tel que pour tout type complet
p(x̄) sur T,

K réalise p(x̄) ssi p(x̄) est principal.

Démonstration. Soit M |= T et A ⊆ M la partie qui interprète C. Soit
K = dcl(M;A). D’après le théorème 3.4.1, A ⊆ K � M, donc K |= T. Soit
p(x̄) un type complet sur T .

Supposons que p(x̄) est réalisé par ā ∈ K. Soit ā = (a1, . . . , an) avec
ai défini dans M par la formule ξi(x, c̄) où c̄ ∈ A, i.e. M |= ξi(ai, c̄) et
M |= ∃!xξi(x, c̄). Alors

K |= ∃!x̄
n∧
i=1

ξi(xi, c̄). (?)

Observons que
∧n
i=1 ξi(xi, c̄) n’est satisfaite que par ā ∈ K. Alors on a

K |= ∀x̄
n∧
i=1

ξi(xi, c̄)→ ϕ(x̄)

pour toute ϕ(x̄) ∈ p(x̄). Comme p(x̄) est complet, par (?) on a T ∪ p(x̄) `∧n
i=1 ξi(xi, c̄). Donc p(x̄) est principal.
Réciproquement, supposons que p(x̄) est principal, i.e. pour la formule

ψ(x̄) on a T ∪ p(x̄) ` ψ(x̄) et T ` ∀x̄(ψ(x̄)→ ϕ(x̄)) pour toute ϕ(x̄) ∈ p(x̄).
Comme T est complète et T ∪ p(x̄) est cohérente, T ` ∃x̄ψ(x̄). Donc K |=
∃x̄ψ(x̄) et p(x̄) est réalisé dans K.

Tout type principal p(x̄) sur une théorie complète T est réalisé dans tout
modèleM |= T.

Extensions finales

Théorème 3.4.3 (MacDowell et Specker). Tout modèle M |= PA1 a une
extension finale élémentaire propre.

On propose une esquisse de la démonstration du théorème de MacDowell
et Specker. SoientM |= PA1 et LA(M) l’extension du LA obtenue en ajou-
tant un symbole de constante pour chaque élément deM. La stratégie de la
démonstration est comme suit :

Si M � K avec K une extension finale de M et c ∈ K \ M, alors K
satisfait la théorie

{ϕ(ā) : ā ∈M |= ϕ(ā), ϕ est une LA-formule} ∪ {c > a}a∈M
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dans le langage LA(M) ∪ {c}. De plus comme K est une extension finale de
M, il omet les types

pa(x) = {x < a} ∪ {x 6= b : b ∈M |= b ≤ a}.

On va définir K = dcl(N ;M∪{c}) pour une N �M et un c ∈ N appropriés.
Avant de commencer à construire N et c on fait une observation. Supposons
qu’on trouve un K �M avecM⊆f K et c ∈ K\M. Alors pour toute formule
ϕ(x, ȳ) et pour tout b̄ ∈M, si K |= ϕ(c, b̄) alorsM |= ∀z∃x(x > z∧ϕ(x, b̄)).
Autrement dit, ϕ(x, b̄) est satisfaite par les éléments d’un sous-ensemble non
borné deM. On va désigner la formule ∀z∃x(x > z∧ϕ(x, b̄)) par l’abréviation
∃cofxϕ(x, b̄).

Lemme 3.4.1. Soient ϕ(x) une LA(M)-formule telle que M |= ∃cofxϕ(x)
et θ(x, ȳ) une LA(M)-formule arbitraire. Alors il existe une LA(M)-formule
ψ(x) telle que :

— M |= ∃cofxψ(x) ;
— M |= ∀x(ψ(x)→ ϕ(x)) ;
— pour tout ā ∈M,

— soitM |= ∃y∀x(x > y ∧ ψ(x)→ θ(x, ā)) ;
— soitM |= ∃y∀x(x > y ∧ ψ(x)→ ¬θ(x, ā)) . �

La démonstration du lemme 3.4.1 n’est pas nécessaire pour comprendre
le reste de l’esquisse et elle exige des arguments utilisant le codage de Gödel
qui est hors du contexte de ce mémoire. Pour cette raison on la saute.

On va utiliser le lemme 3.4.1 pour construire c ∈ K\M. On énumère les
Lc-formules (où Lc = LA ∪ {c}) par :

θ0(c, ȳ0), θ1(c, ȳ1), . . . , θi(c, ȳi), . . .

pour i ∈ N.
On construit une suite de LA-formules :

ϕ0(x), ϕ1(x), . . .

telle queM |= ∃cofxϕi(x) pour tout i ∈ N . L’énumération des ϕi(x) se fait
de la façon suivante. Soit ϕ0(x) la formule x = x. Soit ϕi donnée. Comme
M |= ∃cofxϕi(x), on construit ϕi+1 conformément au lemme 3.4.1 telle que :

— M |= ∃cofxϕi+1(x) ;
— M |= ∀x(ϕi+1(x)→ ϕi(x)) ;
— pour tout ā ∈M,

— soitM |= ∃y∀x(x > y ∧ ϕi+1(x)→ θi(x, ā)) ;
— soitM |= ∃y∀x(x > y ∧ ϕi+1(x)→ ¬θi(x, ā)) .

On construit c pour satisfaire ϕi(x) pour tout i ∈ N. Considérons la
LA(M) ∪ {c}-théorie

T ={θ(ā) :M |= θ(ā) où θ(ā) est un LA(M)-énoncé}
∪ {c > a}a∈M ∪ {ϕi(c)}i∈N.
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Toute partie finie de T est satisfait par M où c est interprété par un
élément suffisamment large pour satisfaire ϕn(x). D’après le théorème de
compacité T est satisfaisable.

Soient N |= T un modèle arbitraire où u interprète c et K = dcl(N ;M∪
{u}) � N . Clairement M ∪ {u} ⊆ K. Par construction de T, pour toute
LA-formule θ(x̄) et pour tout ā ∈ M, on a M |= θ(ā) ssi N |= θ(ā) ssi
K |= θ(ā). DoncM� K.

Définition 3.4.4. K est une extension conservative deM si pour tout b̄ ∈ K
et toute LA-formule θ(u, v̄) il existe ā ∈M et LA-formule ψ(u, w̄) tels que :

{u ∈ K : K |= θ(u, b̄)} ∩M = {u ∈M :M |= ψ(u, ā)}.

Autrement dit, tout sous-ensemble de M définissable dans K est déjà
définissable dansM.

En outre K est une extension conservative deM. Soient a ∈M et b ∈ K
avec b < a. Alors l’ensemble E = {u ∈ K : K |= u ≤ b} ∩M est définissable
dansM tel que E = {u ∈ M :M |= ψ(u, ā)} pour une ψ et un ā ∈ M. Or
E est borné donc il possède un élément maximal m. En effet m doit être égal
à b. Donc b ∈ E ⊆ M. Donc toute extension conservative K � M |= PA1

est une extension finale.

Extensions cofinales

Définition 3.4.5. SoientM⊆ N des modèles de PA1. N est une extension
cofinale deM, noté parM ⊆cf N si pour tout a ∈ N il existe b ∈ M tels
que N |= b ≥ a.

Montrer tout modèle non standard de PA1 a une extension cofinale est
un résultat directe de compacité.

Proposition 3.4.1. SoitM |= PA1 non standard. AlorsM a une extension
cofinale.

Démonstration. Soient M |= PA1 un modèle non standard et b ∈ M un
élément non standard. Considérons la L(M) ∪ {c}-théorie

T = {ϕ(ā) : ā ∈M |= ϕ(ā), où ϕ ∈ FormLA} ∪ {c 6= a}a∈M ∪ {c < b}.

Observons que T est finiment satisfaisable par M avec une réalisation de
constante c par un élément approprié de M. Donc par compacité il existe
un modèle K |= T. Considérons la sous-structure initiale

N = {d ∈ K : K |= d < a pour un a ∈M}

de K. On a clairementM⊆cf N
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Le résultat fondamental concernant les conditions de transfert de la vérité
dans les extension cofinales est le théorème de décomposition de Gaifman.

Théorème 3.4.4 (Gaifman). [Kay91, p. 89] Si M ⊆ N sont des modèles
de PA1, alors il existe un unique modèle K |= PA1 tel que M ⊆cf K ⊆f N .
De plusM� K. �
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Conclusion

Dans ce mémoire, en outre des bases de modèles de l’arithmétique de
Peano, on a étudié les conditions de transfert de la vérité dans les extensions.
On peut considérer

— Le théorème de Robert MacDowell et Ernst Specker [MS61] est une
amélioration du résultat de Skolem qui montre que tout modèle de
PA1 a une extension finale élémentaire.

— Le théorème de Haim Gaifman [Gai72],[Gai76].
comme les résultats essentiels de cette étude.

Un débouché intéressant de cette étude peut être appliquer les idées
dans le MacDowell-Ernst Specker et Gaifman aux modèles de la théorie
des ensembles de Zermelo-Fraenkel afin d’éclairer le rôle d’axiome d’infinité.
[Ena99]
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Annexe A

Bases de la logique du premier
ordre

En mathématiques, on s’intéresse aux objets mathématiques, à leurs pro-
priétés, et à la vérification de ces propriétés. La logique propositionnelle
décrit les relations de vérité entre les propositions mais pas les objets. Pour
cette raison, on va adopter un symbolisme qui pourra exprimer les propriétés
des objets. [HA38, p. 50] On l’appelle la logique du premier ordre.

On va systématiquement définir un alphabet approprié par type de struc-
ture (symboles d’un langage), des mots (termes) décrivant les éléments et des
phrases (formules) décrivant les propriétés. Les structures sont décrites par
certains énoncés de base, qui s’appellent les axiomes. Les théorèmes se dé-
duisent selon certaines règles de raisonnement à partir des axiomes.

Le premier ordre signifie qu’on s’est permis de quantifier sur les éléments
mais pas les sous-ensembles. Le mémoire considère également des formules
de la logique du deuxième ordre. Dans ce cas, on le précisera.

A.1 Syntaxe de la logique du premier ordre I

La grammaire de la logique du premier ordre est intuitive et simple.

Définition A.1.1. Un langage du premier ordre L contient :
— les symboles logiques :

— opérateurs booléens : ∧,∨,¬ ;
— égalité : = ;
— quantificateurs : ∃ et ∀ ;
— variables : v0, v1, . . . (dénombrable) ;
— parenthèses : ) et ( ;

— des symboles non logiques :
— symboles de constantes ci ;
— symboles de fonctions de différentes arités fj ;
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— symboles de relations de différentes arités Rk.
La relation « = » sera toujours dans le langage même si elle est implicite.
On indique simplement L = {ci, fj , Rk}(i,j,k).

Les L-expressions sont les chaînes finies de caractères.
On va utiliser différents types de parenthèses comme ], [ ou }, { de même

que les abréviations :
— ϕ→ ψ pour ¬ϕ ∨ ψ ;
— ϕ↔ ψ pour (ϕ→ ψ) ∧ (ψ → ϕ)

dans les expressions du premier ordre pour une lecture plus aisée. De plus
on peut omettre des parenthèses selon la convention que « ¬ » soit plus
contraignant que « ∨,∧ » et que « ∨,∧ » soient plus contraignants que «→
,↔ » pour la même raison.

Soit L un langage du premier ordre. Toute L-expression n’est pas for-
cément significative. On construit donc par récurrence les termes de L, qui
décrivent les éléments des objets mathématiques et les formules de L, qui
décrivent des propriétés sur ces objets.

Définition A.1.2. L’ensemble Term des termes de L est défini par :
— si c est un symbole de constante de L, alors c ∈ Term ;
— si x est un symbole de variable de L, alors x ∈ Term ;
— si f est un symbole de fonction n-aire de L et t1, . . . , tn sont dans

Term, alors f(t1, . . . , tn) ∈ Term.

Définition A.1.3. L’ensemble Form des formules de L est défini par :
— si R est un symbole de relation n-aire de L et t1, . . . , tn sont dans

Term, alors R(t1, . . . , tn) ∈ Form (appelée « formule atomique ») ;
— si ϕ ∈ Form, alors ¬ϕ ∈ Form ;
— si ϕ,ψ ∈ Form, alors ϕ ∧ ψ ∈ Form et ϕ ∨ ψ ∈ Form ;
— si x est un symbole de variable et ϕ ∈ Form, alors ∃x ϕ ∈ Form et
∀x ϕ ∈ Form.

La notion de complexité vient naturellement de la construction de la
syntaxe par récurrence et peut être définie par : la complexité des formules
atomiques (resp. symboles de constantes, variables) est égale à 0 et si la
complexité de la formule ϕ (resp. du terme t̄) est n et la complexité de ψ
est inférieure ou égale à n, alors la complexité de ¬ϕ,ϕ∧ψ,ϕ∨ψ,∃xϕ,∀xϕ
(resp. f(t̄)) est n+ 1.

On définit le cardinal ‖L‖ de L comme la somme des cardinaux des
symboles logiques et symboles non logiques. Donc comme le cardinal de
l’ensemble des symboles logiques est ℵ0, on a

‖L‖ = ℵ0 + |L|.

Proposition A.1.1. Le cardinal de Form est égal au cardinal de L.
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Démonstration. Soit κ = ‖L‖. Toute formule est une chaîne finie de L.
Comme il existe κ chaînes finies de L, on a |Form| ≤ κ. Observons que
si le cardinal des symboles de relation est égal à κ alors il existe déjà κ
formules atomiques, donc |Form| ≥ κ ; sinon, alors |Term| = κ, donc comme
il y a κ formules de la forme t0 = t1 où t0, t1 ∈ Term, on a |Form| ≥ κ.

Définition A.1.4. Dans une L-formule, une variable peut avoir des occur-
rences liées ou libres. On définit cela par récurrence :

— toute variable apparaissant dans une formule atomique est libre ;
— si ϕ est ¬ψ alors les occurrences libres (et liées) d’une variable dans

ϕ sont celles de ψ ;
— si ϕ est ψ∧θ alors les occurrences libres (et liées) d’une variable dans

ϕ sont celles de l’union des occurrences dans ψ et θ ;
— si ϕ est ψ∨θ alors les occurrences libres (et liées) d’une variable dans

ϕ sont celles de l’union des occurrences dans ψ et θ ;
— si ϕ est ∃xψ alors chaque occurrence de x dans ϕ est liée et les oc-

currences des autres variables sont comme dans ψ ;
— si ϕ est ∀xψ alors chaque occurrence de x dans ϕ est liée et les oc-

currences des autres variables sont comme dans ψ.

Un énoncé est une formule dans laquelle aucune variable n’apparaît de
façon libre.

A.2 Sémantique de la logique du premier ordre

Intuitivement, on définit les « univers possibles » dans lesquels L se réa-
lise, et la « vérité » (relative) par rapport à ces univers.

Soit L un langage du premier ordre. Une L-structure M est donnée par
un ensemble M et une interprétation de chaque symbole non logique de L.

Définition A.2.1. Une interprétation se définit de la façon suivante :
— si c est un symbole de constante, alors cM est un élément de M ;
— si f est un symbole de fonction n-aire, alors fM : Mn → M est une

fonction ;
— si R est un symbole de relation n-aire, alors RM est un sous-ensemble

de Mn.

Définition A.2.2. SoientM etN des L-structures.M est une sous-structure
de N , ce que l’on noteM⊆ N si M est un sous-ensemble de N et :

— si c est un symbole de constante, alors cM = cN ;
— si f est un symbole de fonction n-aire, alors fM est la restriction de

fN à Mn ;
— si R est un symbole de relation n-aire, alors RM = RN ∩Mn.

Définition A.2.3. SoientM et N des L-structures. L’application h : M →
N est un morphisme de L-structures si elle vérifie :
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— si c est un symbole de constante, alors h(cM) = cN ;
— si f est un symbole de fonction n-aire et ā ∈ Mn un n-uplet, alors

h(fM(ā)) = fN (h(a)) ;
— si R est un symbole de relation n-aire, alors h(RM) ⊂ RN .

Définition A.2.4. On dit que h est un plongement si c’est une injection qui
satisfait, pour toute relation R de L et ā ∈M ,

ā ∈ RM ssi h(ā) ∈ RN ;

et un isomorphisme si c’est un plongement bijectif.

Observons que si h est un plongement alors Imh est toujours une sous-
structure de N . Dans ce cas on dit que N contient une copie isomorphe de
M ou par abus de langage queM est une sous-structure de N .

Définition A.2.5. Soient M une L-structure, x̄ un uplet des variables et
ā ∈ M de même longueur. On définit l’interprétation tM[x̄=ā] d’un terme t
dansM à paramètres [x̄ = ā] de la façon suivante :

— si c est un symbole de constante, alors cM[x̄=ā] = cM ;
— si xi est une variable de x̄, alors xM[x̄=ā]

i = ai ;
— si f est un symbole de fonction n-aire et t1, . . . , tn sont des termes,

alors f(t1, . . . , tn)M[x̄=ā] = fM(t
M[x̄=ā]
1 , . . . , t

M[x̄=ā]
n ).

Définition A.2.6. SoientM une L-structure, ϕ une L-formule, x un uplet
des variables et ā ∈M de même longueur. On définit la satisfaction M[x̄ =
ā] |= ϕ (lisonsM est unmodèle de ϕ à paramètres [x̄ = ā]) de ϕ à paramètres
[x̄ = ā] par récurrence :

— si ϕ est la formule atomique R(t̄), alorsM[x̄ = ā] |= ϕ ssi (tM[x̄=ā]) ∈
RM ;

— si ϕ est ¬ψ, alorsM[x̄ = ā] |= ϕ ssiM[x̄ = ā] 2 ψ ;
— si ϕ est ψ∧θ, alorsM[x̄ = ā] |= ϕ ssiM[x̄ = ā] |= ψ etM[x̄ = ā] |= θ ;
— si ϕ est ψ∨ θ, alorsM[x̄ = ā] |= ϕ ssiM[x̄ = ā] |= ψ ouM[x̄ = ā] |=

θ ;
— si ϕ est ∃yψ, alors M[x̄ = ā] |= ϕ ss’il existe un m ∈ M tel que
M[x̄, y = ā,m] |= ψ ;

— si ϕ est ∀yψ, alorsM[x̄ = ā] |= ϕ ssiM[x̄, y = ā,m] |= ψ pour tout
m ∈M .

Observons que la satisfaction d’un énoncé ne dépend pas des paramètres.
En effet les paramètres ne jouent un rôle dans la satisfaction d’une formule
que s’ils interprètent des variables libres. On va donc désigner une formule
ϕ dont les variables libres sont parmi x̄ par ϕ(x̄), et noter plus légèrement
M[x̄ = ā] |= ϕ parM |= ϕ(ā).

Définition A.2.7. Soient M et N des L-structures. M et N sont dites
élémentairement équivalentes,M≡ N , ssi elles satisfont les mêmes énoncés.
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Définition A.2.8. Un ensemble T de L-énoncés s’appelle une L-théorie.
SoitM une L-structure.M est un modèle de T, indiqué parM |= T, si elle
satisfait tout énoncé de T. Une théorie ayant un modèle est dite satisfaisable.
De plus, on définit la théorie complète deM par

Th(M) = {ϕ :M |= ϕ}.

Proposition A.2.1. Soit L un langage du cardinal ‖L‖ = κ. Il existe au
maximum 2κ L-structures de cardinal κ à isomorphisme près.

Démonstration. Soit E un ensemble de cardinal κ. Il existe κ façons d’in-
terpréter une constante, 2κ façon d’interpréter une relation une-aire et il
existe 2κ

2
= 2κ façons d’interpréter une relation binaire etc. Donc il y a au

maximum 2κ L-structures sur E.

On conclut d’après la proposition A.2.1, comme ‖LA‖ = ℵ0, il existe au
maximum 2ℵ0 LA-structures dénombrables à isomorphisme près.

A.3 Syntaxe de la logique du premier ordre II

Définition A.3.1. Soient T une L-théorie et ϕ une L-formule. Une preuve
formelle de ϕ dans T est une suite finie des formule ϕ0, . . . , ϕn = ϕ telle
que : pour tout i ≤ n,

— ϕi est dans T ou ;
— ϕi est un axiome de logique ou ;

— les tautologies ;
— les axiomes de l’égalité ;
— l’axiome du quantificateur existentiel.

— ϕi est obtenue par Modus Ponens à partir des ϕj , ϕk pour j, k < i
ou ;

— ϕi est obtenue par ∃-introduction à partir d’une ϕj pour j < i.

S’il existe une preuve formelle de ϕ dans T on l’indique par T ` ϕ.

Définition A.3.2. Une L-théorie T est dite cohérente ss’il n’existe aucun
L-énoncé ϕ tel que T ` ϕ et T ` ¬ϕ.

Définition A.3.3. Soit T une L-théorie. La théorie T′ ⊇ T est une complé-
tion de T si elle est une L-théorie maximale cohérente.

Théorème A.3.1 (Théorème de Lindenbaum). [CK73, p. 26] Pour un lan-
gage L, toute L-théorie cohérente T a une complétion. �
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