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Chapter 1

Introduction

This report is in set theory, more specifically at the intersection between set-
theoretic topology and Boolean algebras. Its main goal is to study homeomor-
phisms of Stone-Cech remainders of zero-dimensional locally compact Polish
spaces. The origin of the theme lies in the study of Boolean algebra automor-
phisms of P(w)/Fin, where w is the discrete countable space and Fin C P(w)
is the ideal of finite subsets. The subject has further been developed for non-
commutative operator algebras by Ilijas Farah and his collaborators. The
introduction has three sections which contain respectively the contents of our
work, the setting of the problem, and its historical development.

1.1 Contents of the report

The goal of this work is understanding continuous maps, say ¢, between Stone-
Cech remainders, and how these behave in terms of continuous maps between
the underlying spaces. We will call ¢ trivial, if it can be defined in terms of a
map between the underlying spaces in a natural way. Our principal question
is the following: Are all homeomorphisms between Stone-Cech remainders
trivial?

The main content of this report summarises some of the results of [FM12]
and [Vel93|. Therefore we had to first assimilate a number of extra-curricular
topics such as the Open Coloring Axiom, Parovic¢enko’s theorem on corona
spaces, and some infinite combinatorics. Sources are indicated below. As a
result, the first half of the internship was dedicated to these prerequisites,
and only the second half to reading research papers. However the report is
in reverse order. It focuses on [FMI12| and [Vel93|, with all the interesting
groundwork collected in final appendices.

e Appendix [A]is a survey on Martin’s Axiom (MAy,; see Appendix [A.1)),
Open Coloring Axiom (OCA; see Appendix [A.2)) and infinitary combina-
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torics. For preparing this chapter we studied related chapters of [Tod89]
and [Far19).

e Appendix [Blis a review of the Stone-Cech compactification, Stone dual-
ity and their relation for zero-dimensional, locally compact spaces. We
studied related chapters of [CN74] and [Wal74] and quoted the required
results there. In this appendix we also studied Parovi¢enko’s character-
ization of w* which leads to a negative answer for our problem as we
mentioned earlier. For this we referred to [KV84, Chapter 11].

Then we move to [FM12]. Farah and McKenney show the following:

Assume OCA + MAy,. Let X, Y be zero-dimensional, locally com-
pact, non compact, Polish spaces. Then every homeomorphism
p: X* = Y is trivial.

We can divide the proof of this theorem into two: showing that embeddings
of P(w)/Fin — C(X)/K(X) are trivial under MAy, + OCA and amalgamating
these trivial embeddings to construct trivial homeomorphisms. The present
report covers the first part of this proof.

We first study the results for definable (Borel) automorphisms; this is done
in ZFC. Then we study the P-ideals and tree-like families for a proof of “embed-
dings are trivial”. All proofs in this report follow the “blueprint” introduced by
Velickovi¢ in [Vel93]. In fact this “blueprint” is the one that gets used over and
over even when treating more complicated objects and their automorphisms.

1.2 Setting of the problem

We shall start this section with some words on the motivation of this work.
Topology is a branch of mathematics which has deep roots. Topological ideas
are used nowadays roughly in every domain of mathematics since it aims to
generalise what we know occurs in the reals on more general metric spaces. It
has been in great interaction with set theory historically that the literature on
set-theoretic topology is considerably large.

An embedding of a topological space X as a dense subset of a compact space
is called a compactification of X. It is often useful to embed topological spaces
in compact spaces, because of the special properties that compact spaces have.
Stone-Cech is the largest compact space in which a locally compact space X
sits densely, which factorises all continuous maps from X into a compact space
K as a universal property.

One can not see much in compactification itself, yet the remainder is much
more flexible. Therefore corona spaces becomes an exciting place where topol-
ogists, set theorists, infinite combinatorists, Boolean algebraists and analysts
meet.



We study classical subclasses of the class of completely regular spaces; X
will stand for one such space. Denote the Stone-Cech remainder (also called
corona space) X \ X by X*. Our main objects of interest will be continuous
maps ¢ : X* — Y*. We would like to understand them in terms of continuous
functions F' between the underlying spaces X and Y which extend to X* and
Y*. Ideally for all ¢ we would like to find such F'. This would decrease the
complexity of the study of continuous functions between corona spaces. This
amounts to understanding what information about X* is encoded by X itself.
For that purpose we will use the following notion: ¢ is called trivial, if there
exists a continuous F': X — Y such that ¢ = SF \ F where SF is the unique
continuous extension of F' to SX. Note that existence of these functions does
not depend on set theory, as involving only countable information between
Polish spaces. In other words they are absolute. Details on the Stone-Cech
compactification can be found in Appendix [B.I]

We will focus on the zero-dimensional case. More precisely, the space X
under study will always be zero-dimensional, locally compact, non compact
and Polish. In this context, Stone duality (see Appendix provides a
correspondence between the topological notions in the left column and their
Boolean algebraic counterparts in the right column:

BX C(X)
X C(X)/K(X)
: X* =Y | ot C(Y)/K(Y) = C(X)/K(X)

where C(X) denotes the Boolean algebra of clopen sets of X, K(X) C C(X)
is the compact-open ideal and ¢ is the corresponding Boolean algebra homo-
morphism. Therefore one can work with Boolean algebras and their homomor-
phisms instead of working directly in the topological setting which is arguably
more difficult to handle. The prototype of structures in the scope of this work
is the Boolean algebra P(w)/Fin which is the dual of w* where w is the discrete
space of integers given by the usual order topology. Pioneering work in this
domain has been made on the automorphisms of P(w)/Fin. We will mention
it in more detail below.

The following question will be the main interest of this report:
Are all homeomorphisms ¢ : X* — Y™ trivial?

We will see that an answer to this question depends on the set theoretical
ambient.

1.3 Development of the topic

The Continuum Hypothesis (CH) implies that Stone-Cech remainders of zero-
dimensional, locally compact, non compact and Polish spaces are all homeo-
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morphic. In particular they are homeomorphic to w*. This is a consequence
of Parovi¢enko’s characterisation of w* from his 1963 paper [Par63| (for some
details see Appendix [B.3)). From Rudin’s 1956 paper [Rud56] we know that
under CH we can construct a nontrivial automorphism of P(w)/Fin. Therefore
CH produces a negative answer to our main question above.

The first positive answer to the question restricted to w* is given by Shelah
in [She82|. There he shows that “all automorphisms of P(w)/Fin are trivial”
is consistent with ZFC. This arguably “difficult” proof uses the oracle chain
condition. Then Shelah and Steprans in their 1988 paper [SS88]. In this
paper they show that the Proper Forcing Axiom (PFA) implies that every
automorphism of P(w)/Fin is trivial. One can refer to survey paper [FGVV22]
for details of Shelah’s construction.

MAy, was introduced by Donald A. Martin and Robert M. Solovay in their
1970 paper [MS70]. This axiom has been very fruitful by giving numerous
interesting combinatorial, analytic and topological consequences (see [Fre08§]).
Todorcevié synthesised the OCA and proved its relative consistency from PFA
in his 1989 monography [Tod89]. OCA is an uncountable generalisation of
the Baire category theorem, and is known to contradict CH as MAy,. These
Ramsey type axioms are used to study the automorphisms of P(w)/Fin by
Velickovi¢ in his 1990 article [Vel93]. There Velickovi¢ proved that every au-
tomorphism of P(w)/Fin is trivial from another perspective.

Farah extened the study of the “behaviour under OCA + MAy,” to different
spaces, and gave a new prospective to Velickovié’s theorem by stating and prov-
ing the OCA lifting theorem in his monograph [Far(0]. He also systematised
the problem by introducing the weak extension principle wEP(X,Y).

wEP(X,Y) is the following statement:

For any continuous function F' : X* — Y*, there exists a clopen
partition X* = UyUU; such that F[Up] is nowhere dense in Y* and
F | Uy lifts to a continuous Fy : fX — Y where Fi[X]| C Y.

Farah and McKenney showed in their 2018 paper [FMI12] the following:
OCA+MAy, implies that homeomorphisms between Stone-Cech remainders of
zero-dimensional, locally compact, non compact, Polish spaces are trivial.

This analysis was brought to the noncommutative setting again by the
pioneering work of Farah, who showed that OCA implies all automorphisms of
the Calkin algebra are inner, and by further work of his students. A survey of
the current state of the art is [FGVV22].



Chapter 2

(General Notation

In this chapter we will introduce some basic definitions which will be present
throughout the text and derive some elementary results. The reader who is
familiar with the subject may safely skip this chapter. Remind that X is always
assumed as a zero-dimensional, locally compact, non compact, Polish (in other
words separable and completely metrisable) space unless stated otherwise.

Notation 2.0.1. C(X) will denote the algebra of clopen subsets of X and
K(X) will denote its ideal of compact-open sets.

Proposition 2.0.2. There is an increasing sequence of compact-open sets
(K :n € w) such that X =, o, Kn.

Proof. X is Polish and therefore it is second countable. Then there is a count-
able clopen basis B = {B,, : n € w}. By locally compactness every point
xz € X has an open neighbourhood V, such that ¢l(V}) is compact. Then for
every z € X, there is some B, € B such that x € B, C V,. Therefore we have
cl(B;) = B, is compact for all  and X = |, cl(B;). Yet B is countable so
there is a countable I C X such that X = |J,.; B,. By identifying I with w
and defining K, = |J,.,, c/(B;) we finish the proof. O

Observation 2.0.3. Such an increasing sequence (K, : n € w) forms a basis
of K(X) as for all K € K(X), there is some n € w such that K C K.

Proof. Let K C X a compact subspace. Then {K,, N K : n € w} is an open
cover of K. By compactness of K, there is some n € w such that K = K, N K
since K, is an increasing sequence. O

Let X and Y be two spaces carrying an algebraic structure compatible
with the topology. Let I C X and J C Y be two definable (e.g., Borel, or
analytic) substructures inducing quotients X/I and Y/J. Let o : X/I —Y/J
be a morphism. A [ifting is a morphism ¢* : X — Y such that



X Y .y

bk

X/I —<£=Y/J

commutes.

When X and Y are zero-dimensional, locally compact Polish spaces, by
Stone Duality [B.2] the dual of X* is C(X)/K(X) and the dual of a continuous
map ¢ : X* — Y* is a Boolean algebra homomorphism ¢¢ : C(Y)/K(Y) —
C(X)/K(X).

Definition 2.0.4. Let ¢ : X — w be a continuous map. Then e is called
compact-to-one if e7'(n) € K(X) for all n € w.

Observation 2.0.5. Let e : X — w be compact-to-one. Then the homomor-
phism defined by

F.:P(w) = C(X)
a+ e (a)

induces canonically a homomorphism ¢, : P(w)/fin — C(X)/K(X) such that

Plw) — 5 C(X)

iy iy

P(w)/Fin —— C(X)/K(X)
commutes.

Proposition 2.0.6. ¢, is injective if and only if e is bounded on compacts.

Proof. Suppose that e is bounded on compacts. Let a,b € P(w) such that
ve(a) = pc(b) i.e e Ha)Ae H(b) € K(X). Then e !(alb) € K(X). Therefore
by the assumption a/Ab € Fin.

For the converse, suppose for a contradiction that ¢, is injective and there
is K € (X)) such that e is not bounded on K. Define the increasing sequence
of compacts (K, : n € w) by K, = J{e7'(7) : i <n}. Then X =, ., Kn. So
there is some n € w such that K C K,,. Let a = e(K). By the hypothesis a is
infinite and for all i € a\n we have e~!(i) = @ since K C K,,. We have therefore
@e(a\ n) = 0. Since @, is injective, a \ n € Fin which is contradictory. O

Definition 2.0.7. A homomorphism ¢ : P(w)/Fin — C(X)/K(X) is called
trivial if there exists a continuous compact-to-one e : X — w such that ¢ = ¢}.

Observation 2.0.8. In the case ¢ € Aut(P(w)/Fin) triviality is equivalent to
existence of a bijection e : w\ a — w \ b for some a,b € Fin such that ¢ = ..



Chapter 3

Borel Liftings

In this chapter we will give proofs of some classical Borel lifting theorems.
All the results are proven in the ZFC without need of any additional axioms.
Throught this chapter we identify P(w) with 2¢ by mapping = C w to its
characteristic function y,. This endows P(w) with the product topology and
the resulting space is called the Cantor space.

3.1 Borel automorphisms

Theorem 3.1.1 (Theorem 1.1 in [Vel93|). Let ¢ € Aut(P(w)/Fin). Suppose
that there is a dense G subset X C P(w) and a continuous function F : X —
P(w) such that pla] = [F(a)] for all a € X. Then ¢ is trivial.

Proof. We will first consider that X = 2, then generalise the result i.e ¢ has
a continuous lifting. Denote the standard opens of 2¥ as N, where s € 2<“.
For s,t € 2= we say that s forces t if F(N;) C N;. Construct by induction
the increasing integer sequence (n; : i € w) and functions f; : [n;,ni41) — 2
such that

1. for all i € w and all s € 2™ we have s U f; forces some t € 2"i;

2. foralliew, s, s €2 k>mn;yand g: [ni41, k) — 2if sU f; U g forces
some t and s U f; U g forces some ¢’ then ¢(j) = t'(j) for all j > n;41.

Claim 3.1.2. Above sequence and functions are well defined.
Proof. Suppose that we have f; 1 and n;. We will to construct f; and n;q
following (1) and (2).

Let {s; : j € 2™} be an enumeration of 2. Define partial functions

ff for j € 2" inductively as follows: f = fi_;. Suppose fzj is defined and
domf/ N'n; = 0. Since I is continuous and N, is compact we would find



eventually an fin D fij such that s; U fij 1 forces a t € 2. Define ¢; = 2

(to be used at the end of the proof of the Claim). By construction f; = f D g;
would satisfy (1).

For the condition (2) we will use an auxiliary definition. Let s,s" € 2™. A
partial function f is a witness for (s, s') if there is some n > n; such that

3. f:[ni,n) — 2 and

4. for any k > n, g: [n,k) — 2, t,t' € 2<% such that s U f U g forces t and
s"U f U g forces t' then t(j )—t’( ) for all j > n.

Claim 3.1.3. For every partial function h : [n;, k) — 2 and every s, s’ € 2™
there is a witness f D h of (s, ¢').

Proof. Suppose for a contradiction that there exist s,s € 2" and h : [n;, k) — 2
such that there is no f extending h which witness (s, s’). Then we can define
sequences of partial functions (b : j € w) (by iteratively defining h° = h
and extending h’ by using the hypothesis), (#/ : j € w), (t’ : j € w) and
an increasing sequence of integers (I : j € w) such that s U h’ forces #/ and
s' U I forces t7 and /(1) # ¢7(17). Then define v = s UJ{I’ : j € w} and
¥ =5 UUJ{I : j € w}. Then we have clearly z =* 2/. Yet F(x) #* F(z)
which is a contradiction since F' lifts . OJ

For the condition (2), we will apply the Subclaim repeatedly for each
(s,') € 2™ x 2". Enumerate 2" x 2™ as {(s/,s7) : j € 2°"}. Define by
induction the ( : j € 22) and (n] :€ 22™) as follows: Define ¢ = g; and
n) =n;. Let g and nl be given. By the Subclalm we can find /™" > n? and
gf“ such that ¢/™" D g where g/*' ¢ [n;,n?T") — 2 and ¢/ is a witness of
(s7,5". Let fiq = ¢>" and n;y; = n¥". This concludes the proof of the

2

Claim. 0

Now define a¢ = |J{[ni,nit1 : ¢ = ¢ mod 3} and fE =U{fi:i=
mod 3}. Then consider the functlon FO(x ) F(xUad' Ua?) \ F(a' U a?).
Since ¢ is a homomorphism, F°(z) =* F(z) for all x C a°. Then we can find

functions h; such that
1. h;: P([?’Lgi,n3z‘+1)) — P([ngi_h n3i+2)) for i € w,

2. FO(SL’) = U{hz<$ N [ngi,n3i+1)) 11 € W}.

Claim 3.1.4. For all but finitely many ¢ € w we have
hi(uUwv) = h;(u) U h;(v)
for all u,v € P([ng;, nsit1))-

Proof. Assume for a contradiction that there is an infinite A C w such that fr
every ¢ € A there are u;, v; C [ng;, ng;iy1) such that h;(u; Uv;) # hi(u;) U hi(v;).
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Let u = J{w; :i € A} and v = [J{v; : i € A}. Then F(uUwv) #* F(u) U F(v).
This contradicts that ¢ is a homomorphism. 0

Claim 3.1.5. h; maps singletons to singletons for all but finitely many 7 € w.

Proof. Assume for a contradiction that there is an infinite A C w and [; €
[ni,niy1) for all i € A such that h;({/;}) is not a singleton. Take m; € h;({l;})
for all i € A and define y = {m; : i € A}. Then there is no = such that
F(z) =*y. This contradicts ¢ is surjective. O

Therefore we can define a function h° : a® — w by h%(l) = kif | €
[n3i,n3iv1) and g;({{}) = k. Then h° induces ¢ on P(a’)/Fin. Similarly
we can find A and h? inducing ¢ respectively on P(a')/Fin and P(a?)/Fin.
Combining these three functions and changing on a finite set would give a
bijection h : w — w defined almost everywhere witnessing that ¢ is trivial.

To finish the proof we will consider the general case that F' is defined on
a dense G5 set X. Then there are dense open sets U, such that X = U,.
Then construct inductively an increasing sequence (my, : k € w) and a sequence
of finite functions (fy : k € w) such that fi : [my, mg1[— 2 and Ny, C Uy, for
every s € 2™ . Then let f¢ = J{fx : K = ¢ mod 2} and a® = | J{[mk, mss1) :
k = emod2}. Then for every x C a® we have x U f17¢ € X. Therefore we can
define F° : P(a) — 2 by Fé(x) = F(z U f17¢)\ F(f'7¢). As above we can
find h° and A' inducing ¢ on P(a’)/Fin and P(a')/Fin. By combining them
we obtain the desired result. O]

An automorphism ¢ of P(w)/Fin is called a Borel automorphism if there
is a Borelian map F : P(w) — P(w) which lifts to ¢.

Corollary 3.1.6. Every Borel automorphism of P(w)/Fin is trivial

Proof. Let ¢ € Aut(P(w)/Fin) be a Borel automorphism. Then it is a well
known fact that its graph I'(¢) C 2 x 2¢ is Borel with countable sections. By
Lusin-Novikov Theorem (see [Kec95l 18.10]), these sets can be uniformised by
Borel sets. Thus there is a function F': 2¥ — 2¢ lifting ¢ and I'(F') is Borel.
It is also well known (see [Kec95l 8.38|) that such F is continuous on a dense
Gs set X C 2¢. By Theorem we achieve the desired result. O

3.2 Countably many Borel choice functions

Theorem 3.2.1 (Theorem 1.2 in [Vel93|). Let ¢ € Aut(P(w)/Fin) and F :
P(w) = P(w) such that p(a) =* F(a) for every a € P(w). Suppose there exist
Borel functions F,, : P(w) — P(w) for n € w satisfying for every a € P(w)
there exists n such that F(a) =* F,(a). Then ¢ is trivial.
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Define the trivial ideal
J ={ae€Pw):pais trivial}.

Let (P, <) be a poset. A subset X C P is called cofinal if for every p € P there
is some x € X such that p < x. Proof of the theorem requires the following
lemmas.

Lemma 3.2.2. J is not a maximal non principal ideal.

Proof. Suppose for a contradiction that J is a maximal nonprincipal ideal.
Fix a dense G5 subset X C P(w) such that F,, | X is continuous for all n.

Claim 3.2.3. There exist a coloring of w = ag U a; and t. C a, for € € 2 such
that if x C a, then x Ut,_. € X.

Proof. Fix a decreasing sequence (U, : n € w) of dense open sets such that
X =(),ee, Un- Build inductively an increasing sequence of integers (n; : i € w)
with ng = 0 and a sequence of sets (s; : ¢ € w) such that s; C [n;, n;11) and for
all z € P(w) if x N [ng,niy1) = s; then x € U;. Define a, = J{[ns, nis1) i =€
mod 2} and t. = (J{s; : i = € mod 2} for € € 2.

Fix an € € 2. Pick £ C a.. Then it is clear that z U t,_. € U, for all
n € w since (x Ut;_) N [ng,nip1) = s; for all i = 1 — e mod 2. Therefore this
construction works. U

Now we return to the proof of the Lemma [3.2.2]and fix a coloring as in the
Claim [3.2.3] Suppose that ¢ is nontrivial on ao and define a function

Gn(z) = F(x Uty) N F(ap)

for each n € w. Since each F), is continuous on X, (,, are also continuous on
P(ap) and for every x C ag there exists n € w such that G, (z) =* F(z). Let
Z be the restriction of J to P(ap). Then for every a € Z pick a one-to-one
function e, : @ — w inducing ¢ on a and define the function F, : P(a) — P(w)
by E,.(z) = eq[z]. Then E, is continuous and E,(z) =* F(x) for all z C a.

Now fix an a € 7 and define the sets
DS, = {r: E(x) \m =G, \ m)

where n,m € w. Observe that P(a) = U, e, Diim- Then there are some
n,m € w such that Dj  is dense in some clopen U C P(a) since countable
union of nowhere dense sets would be nowhere dense.

Now define the quintuples (i,1,m,s,t) such that i,l,m,€ w, t C i and
s :doms — w is a function with doms € w. Let {(iy,l,, My, Sp, tn) : 1 € w} be
an enumeration of all these quintuples. Define a function H,, on P(ag) by

H,(z) = (G, ((z \ i) Uty) \ mpn) U sy[z N dom(s,,)].

12



{H, : n € w} is a family of continuous functions on P(ag) such that for
every a € Z there exists n € w such that H,(x) = e,[z] for all x C a. Then
define the sequence

Z,={a€Z: Hy(x)=e,z]: forall z Ca}.

Now if we suppose that one of Z, is cofinal in (Z, C*) we can define e =
U{es : @ € Z,} since for any a,b € Z, we have e, is equal to e, on a N b.
Therefore e induces ¢ on every a € Z. Therefore e induces ¢ on ag which is a
contradiction.

So none of 7, is cofinal in Z. Then we can find a decomposition ay =
U,e, bn such that b, € Z. Therefore there is no b € Z with b, C* b for all n.
Let A be the set of all b C ag which are almost disjoint from all the b,. Then
A C T is a o-directed sub ideal by Let A, = ANZ,. Then there exists
n € w such that A, is cofinal in A. Now define e = (J{e, : @ € A,,} as above.
This then the following claim implies that ¢ is trivial on ay.

Claim 3.2.4. There exists k € w such that e induces ¢ on ag \ |, b:.

Proof. Suppose for a contradiction that T'= {n € w : e | b, is not trivial}
is infinite. Then for each m € T pick an infinite ¢, C b,, such that e[c;,] N
Flc,] € Fin. Moreover for any m,k € T, we can find ¢, and ¢ satisfying
elem] N F(cx) € Fin by shrinking ¢,,, ¢;. Therefore we can find d C w such that
F(cm) C* dfor all m € T. Since F is surjective, there is ¢ C w with F'(¢) =* d.
Therefore ¢,, C* ¢ for all m € T. Then we can pick i,, € ¢, N c such that
e(im) € F(c). Define b = {i,, : m € T'}. Then clearly b € A. This implies that
F(b) =* e[b]. Also since b C ¢ we have F(b) C* F(c). Yet e[b] N F(c¢) € Fin by
definition of b. Contradiction. OJ

So T should be finite. Then e induces ¢ [ a for all a in the ideal generated
by A and {b,, : m & T}. Because this ideal is dense in P(u) where u =

a\ Upmer Om- O

Proof of the Theorem[3.2.1. Now we return to the proof of the theorem. As-
sume that ¢ is nontrivial and build inductively disjoint sets a,, and x, such
that for every n € w

® 1, C ap,
e ¢ is nontrivial on w \ J,.,, a;,
e for every w \ |J,.,, a; we have

F, (U x; Ux) N F(an) #* F(x,).

i<n

13



Suppose (a; : i € w) and (z; : i € w) are constructed. Let ¢, = w\ U,_, a
and z, = J,_,, #i- By the Lemma there is a decomposition ¢, = d,, Ue,
such that ¢ is nontrivial on both components. For y C d,, define

B,(y)={xCe,: Fy(znUyUz)NF(d,) =" F(y)}.

By definition, B, (y) C P(e,) is a Borel set.
Claim 3.2.5. There exists y C d,, such that B,(y) is not comeager.

Proof. Suppose for a contradiction that B,(y) is comeager for all y C d,.
Let T'(¢ | d,) be the graph of ¢ [ d,. For any (y,u) € T'(¢ | d,) we have
{z Ce,: F(z, UyUx)N F(d,) =" u} is comeager. Therefore I'(¢ | d,) is
analytic can be uniformised on a comeager set by a continuous function. Thus
by the Theorem we have ¢ is trivial on d,. Yet this contradicts that ¢ is
nontrivial on d,,. O

Now we will construct the sequences (a, : n € w) and (x, : n € w)
inductively. Fix some y C d,, and a standard clopen set N, C P(e,) such that
B, (y) is meager in Ny. Let ug = s71(0) and u; = s7'(1) and u = ugUu;. Find
a decomposition e, \ doms = €% U e}, and subsets t. C e, where € € 2 as done
in the Claim satisfying u Uz Uty ¢ B,(y) for all z C ef,. Then there is
some € € 2 such that ¢ is nontrivial on ef,. Assume without loss of generality
that this is the case for € = 0. Set a,, = d,, Uug U e} and x, =y Uuy Uty.

Let x = {J, ¢, Zn- For every n € w we have F,,(z)NF(ay,) #* F(z,). Yet by
the hypotheses of the theorem there is some n € w such that F,(z) =* F(x).
Contradiction. O
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Chapter 4

Embedding P(w)/Fin into
C(X)/K(X)

In the first two section of this chapter, we prove some lemmas which are the
main components of the proof of the main theorem of this report. These lem-
mas are generalisations of the analogues from [Vel93| which are given in [FM12]
without poofs. Then by using these lemmas, we prove the main theorem in
the third section.

Fix for the rest of the chapter an injective homomorphism ¢ : P(w)/Fin —
C(X)/K(X), a corresponding function F': P(w) — C(X) and define the ideal
of trivial sets

J ={a e Pw):pais trivial}.

4.1 P-ideals

In this section we will study the triviality with respect to P-ideals.

Definition 4.1.1. An ideal Z C P(w) is called a P-ideal if for each countable
sequence (A, € Z:n € w) there is an A € 7 such that A, C* A for all n € w.

Lemma 4.1.2 (Lemma 2.4 in [Vel93]). Assume OCA and MAy,. If J is a
dense P-ideal then ¢ is trivial.

Proof. For every a € J fix a Z, € C(X) and a compact-to-one function e, :
Z, — a such that ¢([a]) = [Z,] and p([b]) = [e~! ()] for all b C a. Then define
fa:w — C(X) by fo(n) =e1({n}).

Define the partition [J]*> = My U M; as {a,b} € M, if and only if there
is some n € a N b such that f,(n) # f,(n). Since this condition is existential,
My is open in the topology obtained by identifying a € J with (a, f,) €
P(w) x C(X)~.
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Claim 4.1.3. There is no uncountable My-homogeneous subset H C 7.

Proof. Suppose for a contradiction that these is an My-homogeneous H with
|H| = Wy. Since J is a P-ideal, there exists H C J such that for every
a € H there is a b € H with @ C* b and order type of (H,C*) is w;. OCA
implies that H has an uncountable subset which is either My-homogeneous or

M;i-homogeneous. By shrinking, we shall suppose that the subset is H.

Suppose for a contradiction that H is M;-homogeneous. Define a = |J H
and f =,z fo with f: @ — C(X). Then clearly « C* @ and f; | (@Na) =
fa I (@Na) for all a € H. Choose n such that for uncountably many a € H
we have a \n C a and f; [ (a\n) = f, | (a\ n). Take such a,b € H with
fo In=f, | n. Then {a,b} € M, which is contradictory. Therefore H is
Mpy-homogeneous.

Let (K, : n € w) be an increasing compact cover of X which exists the
Proposition . Define a poset P by p € P if and only if p = (A,, m,, H,)
where m,, € w, A, € C(K,,,) and H, € [H|<“ satisfying for any a,b € H,, there
is an n € a N b such that either

fan)N A, =0 and f,(n)N A, #0

or

fo(n)NA,=0and fo(n)NA,#0

equipped with the order p < ¢ if and only if m, > m,, A, N K,,, = A, and
H,D H,.

Claim 4.1.4. P is ccc.

Proof. Let X C P be uncountable. By the pigeonhole principle we may assume
that there is a fix m € w and A € C(K,,) such that m, = m and A, = A for
all p € X. Moreover we may assume that |H,| is the same for all p € X.

Let a, be the C*-minimal element of H), for each p € X. Find n, such that
for all a € H), satisfying f, I (a,\n,) C fo and e, (Kp,) C nyp.

Similarly we may assume that for some fixed n we have n, = n for all
p € X. Find p,q € X such that f,, [ n = fo, [ n. As we have {a,,a,} € My,
there is some k € a, N a, such that fo (k) # f., (k). Therefore k& > n and
Fuy (6) 0 Ko = foo () 1 Ko = 0. Then fu () \ fuy (B) 08 fu (5) \ oo (K) i
non empty. Call the non-empty one B. Define r € P such that A, = AU B,
H, = H, U H, and pick m, large enough to satisfy A, C K,,, . Then clearly
r<p,q. U

By MAy,, there is a set A € C(X) and an uncountable H* C H such that
for all distinct a,b € H*, there is some n € aNb such that either f,(n)NA, =
0 and f(n) N A, # 0 or fo(n) N A, =0and f,(n) VA, # 0. Let  C w with
F(x) = A. Then for all a € H* we have e”!(x N a)A(AN F(a)) is compact.
So there are k, and m, such that e;'(z Na\ k,) = (AU F(a)) \ K,,, and
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e;(a\ky) = F(a)\ Kp,. Then for all n € a\ kg, if n € x then f,(n) C A and
if n & x then then f,(n)NA = (). Pick distinct a,b € H* satisfying k, = k, = k
and f, [ k= f, | k. Then we have f,(n) N A =0 if and only if fy(n)NA =10
for all n € anb. Yet this contradicts the assumptions on A. [l

Now by OCA, there is a decomposition J = UnEW Jn where 7, is M;-
homogeneous for each n. As J is a P-ideal, there is some n € w such that
Jn is cofinal in (7, C*). Let T,, be such then define f = |J{f, : a € J,}. Set
e(x) = nif and only if x € f(n). Then since J is dense and J,, C J is cofinal,
a +— e~ 1(a) witnesses that ¢ is trivial. O

Definition 4.1.5. An ideal Z C P(w) containing Fin is called Py, -ideal if for
every family F C T of size Ny there is some A € T such that B C* A for all
Be F.

Remark 4.1.6. OCA implies that if Z is a Py,-ideal and {f, : a € Z} is a
family of functions such that f, : « — w and f, [ a =" f, whenever a,b € 7
and a C b then there exists f : w — w such that f [ a = f, for all a € Z (see
|[Far00, Chapter 2.2]).

Lemma 4.1.7 (Lemma 2.5 in [Vel93]). Assume b > Ny. If J is not a dense
P-ideal then there is an uncountable almost disjoint family A C P(w) such

that ANJ = 0.

Proof. Suppose first that 7 is not dense. Then there is some infinite A € P(w)
such that there is no B € J satisfying B C A. In other words P(A) N J = 0.
Then we can find some uncountable almost disjoint A C P(A).

Now suppose that 7 is dense but not a P-ideal. Then there is a sequence

(A, : n € w) such that there is no A € J satisfying A, C* A. We can suppose
without loss of generality that (J, .., An = w and A, are pairwise disjoint. For

f € wY define By = J{A, N f(n) :n € w}.
Claim 4.1.8. There exists f € w* with ¢ is nontrivial on By.

Proof. Suppose for a contradiction that By € J for all f € w”. Therefore
there exists ey : By — w witnessing the triviality of ¢ on By. Define 7 as all
By which are almost disjoint from A, for all n. Since b > R, we have 7 is
Py,-subideal of J. Moreover from the Remark [4.1.6] there exists e : X — w
such that e [ B =* e for every B € Z. Note that we abuse the notation for
simplicity by writing e | B. Here we mean clearly e™! | B.

Claim 4.1.9. There exists k € w such that e induces ¢ on w \ {J,; 4i.

Proof. 1t is sufficient to show that S = {n € w : e | A, does not induce ¢ |
A,} is finite.

Suppose for a contradiction that S is infinite. Then for all n € S, choose
an infinite C,, C A, such that e~*(C,) N F(C,) € K(X). By shrinking C,, we
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can arrange that e (C,,)NF(C,,) € K(X) for every n,m € S. Then find some
U € C(X) such that F(C,) C* U and e 1(C,) NU € K(X) for all n € S. Let
F(C) =*U. Pick some 4, € C, NC such that e '({i,}) €* F(C,). Observe
that B = {i,, : n € S} is trivial. So e”!(B) =* F(B). Since B C C we have

F(B) C* F(C). Yet e '(B)N F(C) € K(X). Contradiction. O
Yet the Subclaim contradicts with the nontriviality of ¢. This completes
the proof of the Claim. U

For any f € w* we can find some g € w* with f <* g and By \ B,
is nontrivial by applying the same reasoning in the Claim for above A, N
f(n). Since we assumed b > wy, we can inductively construct an <*-increasing
sequence (f, : @ € wy) such that By, \ By, are nontrivial. Therefore A =
{B.,, \ By, : @ € wy} is the desired family. O

4.2 Tree-like families

A tree-like family is a family of infinite subsets of w whose elements corre-
spond to the infinite branches of the tree 2<“. In this section we will see that
under MAy,, any uncountable almost disjoint family contains an uncountable
subfamily which can be divided into two tree-like families.

Definition 4.2.1. An almost disjoint family A is tree-like if there is a tree T'
on w and an injection ¢ : w — 2<% such that for each a € A and each m,n € a,
either t(m) C t(n) or t(n) C t(m).

Lemma 4.2.2 (Lemma 2.3 in [Vel93|). Assume MAy,. Then for every un-
countable almost disjoint family A C P(w) admits an uncountable B C A and
partitions b = by by for b € B such that B; = {b; : b € B} is tree-like fori € 2.

Proof. Following [Vel93], define the poset P’ such that p € P if and only if
p= (eg’ 61177 Np, Ap7 Dp) where

1. n, €w,
2. €, :n, — 2<¥ is into,

3. A, € A is finite such that for any two different a,b € A, we have
anbCny,

4. D, ={f; :a € A} where f :ann, — 2 for every a € 4,

5. for every k,l < n,, if there exists a € A, such that k,1 € a and f; (k) =
fo(l) =i for some i € 2 then e}, (k) C el(1) or e}(l) C el (k),

with the order p < ¢ if and only if ng < ny, €, C € fori € 2, A, C A, and
fq C [y for every a € A,.
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Claim 4.2.3. P is ccc.

Proof. Let S C P be a subset of size 8;. By the pigeonhole principle we may
suppose that there exist n € w and €' : n — 2<% such that n, = n and e; = ¢!
for all p € S and for all 7 € 2. Moreover by the A-system lemma we may
assume that {A, : p € S} is a A-system with root A. Assume therefore that
for each a € A, there is f*:aNn — 2 such that f = f® for all p € S.

Pick two different elements p,q € S. We will construct » < p,q. Let
A, = A, U A, and pick n, > n sufficiently large such that a Nb C n, for any
distinct a,b € A,. Suppose that a € A,. Define f*: aNn, — 2 such that

fy(k) ifa€Ayand k <n

(k) = 0 ifae A,andn <k <n,
) fa(k) ifae A\ Ay and k <n
1 ifae A, \ Ay, and n <k <n,

So D, ={f*:a€ A}

Lastly we define €’ : n, — 2<% as follows: €. | n = e!. We have already that
(e")’(ann) is a chain in 2<“ moreover {a\n :a € A,} and {a\n:a € A,\ 4,}
families of disjoint sets. So we can define €2 | [n,n,[ to (e?)”(aNn,) be a chain
for every a € A, and e} | [n,n,[to (e;)”(aNn,) be a chain for every a € A,\ A4,
respecting the rules (2) and (5). From the construction it is clear that r € P
and r < p,q. O

Now assume without loss of generality that |A| = N; and define D,, =
{peP:ac A,and n, >n} where a € A and n € w.

Claim 4.2.4. D,,, C P is dense for all a € A and n € w

Proof. Fix a € A and n € w. Pick p € P where p = (eg,ezl),np,Ap, D,). Then
we shall find ¢ € D, , as follows: Let A, = A, U {a}. Then let n, > maxn,,n
be the smallest k 2 aNb for all b € A,. Then we can find f7 O f¥ and ¢}, D e,
Observe that ¢ € D, , and ¢ < p as desired. 0]

By the MAy,, there is a {D,,, : a € A,n € w}-generic filter G. Then for
all a € A there is a total function f*:a — 2= U{fy :p € G,a € A,}. Define
ap = (f*)7'(0) and ay = (f')~'(1) as a = a,Uay. Moreover ¢’ = | J{¢}, : p € G}
witness that {a; : a € A} is tree-like. O

Lemma 4.2.5 (Lemma 3.5 of [FM12]). Assume OCA. Let A be an uncount-
able, tree-like, almost disjoint family of subsets of w. Then J \ A is countable.

Proof. Let t : w — 2<% be an injection witnessing that A is tree-like and X
be the set of all pairs (a,b,) of subsets of w such that there exists ¢ € A with
b C a C c. Define the coloring [X]* = My U M; by {{(a,b), (a,b)} € M, if and
only if
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1. tla] # t[al,
2. anb=anNband
3. Fla)NF(b) # F(a) N F(b).

Then Mj is open in the product of the separable metric topology on X obtained
by identifying (a,b) with (a,b, F'(a), F'(b)).

Claim 4.2.6. There are no uncountable My-homogeneous subsets of X.

Proof. Suppose for a contradiction that there is such Y C X. Define d =
U{b : {(a,b) € Y for some a}. Pick (a,b,) € Y. By the second condition
dNa="band so F(d) N F(a) =* F(b). By pigeonhole principle we can find
an uncountable Z C'Y and n € w such that (F(d) N F(a))AF(b) C K,, and
F(b)\ K, C F(a) for all (a,b) € Z. Then there are distinct (a,b) and (@, b) in
Z such that F(a) N K, = F(a) N K, and F(b) N K,, = F(b) N K,. Therefore
we have F(a) N F(b) = F(a) N F(b). This contradicts {(a,b), (a,b)} € My. O

Therefore OCA implies that there is a countable decomposition X = J,,,, Xn
where X, are M;-homogeneous. Fix a countable dense subset D,, C X, in the
sense of the product topology. For each (a,b) € X pick o(a) € A such that
b CaCo(a) and define B = {o(a) : {(a,b) € D,, for some n € w}.

Now we show that ¢ is trivial on every ¢ € A\ B. Fix any such ¢ and
decompose it into two disjoint sets ¢ = ¢ U ¢q such that foe every e € 2, n € w
and (a,b) € X, if a C ¢, then for every m € w there exists (a,b) € D, such
that:

l.anb=anb,

2.anm=anNmand bNm=>bNm,

3. Fla)NK,, = F(a) N K, and F(b)N K,, = F(b) N K,,.

The decomposition is done as follows: First construct an increasing se-
quence (n; : i € w) by induction. Let ng = 0. Suppose (n; : i < k) is defined.
Then choose ng,q sufficiently large such that for every x,y C n; and every
i < k if there exists (a,b) € X; such that anNng =z, bNn, =y, F(z) C K,
and F(y) C K,, then there exists (a,b) € D; satisfying the same properties
and aNec C ngyq. Since a is almost disjoint from ¢ we can find such b satisfying
(a,b) € D;.

Now define ¢ = [J{cN[ng, ngs1) : £ =0 mod 2} and ¢; = ¢\ ¢y. Moreover
define the sequence of functions F), : P(cy) — C(X) by F,(b) = U{F(co) N
F(b): {(a,b) € D, and aNb=coNb}.

By definition F,, are Borel functions. Let (co,b) € X,,. Then F, (b) =* F(b).
By the Theorem [3.2.1] ¢ is trivial on ¢y. By defining an analogue sequence of
functions we show that ¢ is trivial on ¢;. Therefore we have ¢ is trivial on
c. [
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4.3 Embedding Theorem

In this section we will show the main result of this report: every embedding
of P(w) in C(X)/K(X) is trivial under OCA 4+ MAy,. We will prove this by
showing that 7 is a dense P-ideal. By virtue of the lemmas of the previous
sections we will prove that 7 is a P-ideal. We will quote some consequences of
the independent works of Jalali-Naini and Talagrand ([JN76] , [Tal80]) which
characterise comeager subsets of certain compact spaces and as a result show
that J is dense. Recall that Y C X is meager, if Y is a countable union of
nowhere-dense sets and comeager if X \ Y is meager.

Following theorems are from the paper [MV21]. These are due to Jalali-
Naini and Talagrand independently. Their proofs can be found in [Far00,
Chapter 3.10.

Theorem 4.3.1 (Theorem 2.1 of [MV21]). Let Y, be finite sets forn € w. A
set G C [[Y, is comeager if and only if there is a partition (E; : i € w) of w
into finite intervals and a sequence t; € HneEi Y, such that y € G whenever

{icy I (Ilep) = ti} is infinite. O

A set H C P(w) is called hereditary if whenever b € H and a C b, we have
a € H. Any ideal of P(w) is hereditary by definition. We have the following
theorem as a corollary of Theorem [4.3.1]

Theorem 4.3.2 (Proposition 2.4 of [MV21]). Let Z C P(w) be an ideal con-
taining Fin. Then the following are equivalent:

1. T has the Baire property;
2. T 1s meager;

3. there is a partition (E; : i € w) of w into finite intervals such that for

any infinite set L, |, En is not in . O

Corollary 4.3.3 (Corollary 3.10.2 of [Far00]). A subset Z C P(w) is comeager

if and only if there is a sequence 0 = ng < ny < --- of natural numbers
and s; C [ng,niy1) such that T includes the set {a C w : a N [n;,ni1) =
s; for infinitely many i}. d

Theorem 4.3.4 (Theorem 3.1 of [FM12]). Assume OCA + MAy,. Suppose
that
¢ : P(w)/Fin — C(X)/K(X)

15 an injective homomorphism. Then ¢ s trivial.

Proof. Strategy of the proof is to show that J is a dense P-ideal and conclude
by the Lemmal4.1.2] Suppose for a contradiction that 7 is not a dense P-ideal.
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We will consider following cases independently: J is not a P-ideal; J is not
dense.

We shall begin by the first case “J is not a P-ideal”. By the Lemma 4.1.7]
there is an uncountable almost disjoint family A C P(w) such that ANJT = (.
Therefore by the Lemma [£.2.2] there exists an uncountable subset B C A and
a coloring b = by U by for all b € B such that B; = {b; : b € B} are both
tree-like for ¢ € 2. So by the Lemma [4.2.5] all but countably many of the
clements of B; belong to 7. Call it B;. Then by the pigeonhole principle there
in uncountably many b € B such that b; € lg’l for both colors 7 € 2. Since J is
an ideal, by, b; € J implies b= by Ub; € J. Thus BN J # (. Contradiction.

From the construction in Lemma [3.2.2] we know that there exists a se-
quence (n; : i € w) of integers and a sequence of subsets (s; C [n;,n;11) : 1 € w)
such that {a € w : a N [n;n;1) = s; for infinitely many ¢} belongs to J.
Therefore J is comeagre so it is dense. O
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Appendix A

Forcing Axioms and
Combinatorics

The main results of this report depend on the set theoretic ambient. In other
words, some phenomena in the scope of this work depend on the models of the
set theory (Zermelo-Fraenkel set theory with Aziom of Choice, shortly ZFC).
Forcing Axioms are higher versions of the Baire Category Theorem, ensuring
the existence of as many generics as possible, and therefore providing models
in which the universe is as complete as possible. We will state one here which
will serve throughout this appendix: Proper Forcing Axziom (PFA).

Definition A.0.1. A forcing notion IP is called proper if for every uncountable
cardinal A, forcing with [P preserves stationary subsets of [A]“.

Definition A.0.2. PFA is the following statement: If P is a proper forcing
notion and D is a family of N; dense subsets of P then there is a D-generic

filter GG on P.

PFA was introduced by Baumgartner in [KV84, Chapter 21| although it
was implicitly present in earlier work of Shelah [She82]. Its consistency was
proved in [She82|. Properness is in fact a weakening of the ccc. Therefore in
some sense PFA is a generalisation of Martin’s Axiom. Yet unlike Martin’s
Axiom, consistency of PFA requires large cardinals. One may see [Shel6] or
[She82| for a detailed study of PFA, its roots and consequences.

In this appendix we review some required notions and related results. For
a general treatise of set theory see [Kun83|, [Kunll] or [Jec03|. Our set theo-
retical notation follows these three books.

A.1 Martin’s Axiom

We review some notions related to forcing and give the statement of Martin’s
Aziom. One may refer to [Fre(8] for an extensive study of consequences of
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Martin’s Axiom.

Definition A.1.1. A forcing poset is a triple (P, <, 1) such that < is a preorder
with largest element 1.

Definition A.1.2. Let P be a forcing poset, p,q € P and A C P. Then

1. p,q are comparable if p < q or q < p;

2. p,q are compatible (denoted by p || ¢) if there is some r € P such that
< D,q;

3. p,q are incompatible (denoted by p_Lq) if they are not compatible,

4. Ais a chain if elements of A are pairwise comparable;

5. A is an antichain if elements of A are pairwise incompatible;

6. Ais dense in P if for any x € P there exists y € A such that y < z;

7. P has the countable chain condition (ccc) if every antichain is countable.

Definition A.1.3. G C P is a filter if

1. 1 €,
2. for any z,y € G, there exists r € GG such that r < z,y and
3. for any x,y € P, if z € G and = <y then y € G.

Definition A.1.4. MA, is the following statement: For every ccc poset P,
whenever D is a family of dense subsets of P with |D| < k, there exists a filter
G on P such that GN D # () for all D € D.

Proofs of the following theorems can be found in [Kun83, Chapters IT and
VIIL.6] or alternatively in [Kunlll Chapters III and V.6]. Relative consistency
results can be achieved by iterative forcing (as it is done in Kunen) as well as
using relative the consistency of PFA.

Theorem A.1.5. MA, is relatively consistent with ZFC. U

Theorem A.1.6. MA, implies that the continuum is strictly bigger than k. [

Therefore Martin’s axiom is independent from ZFC and CH is inconsistent
with it.
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A.2 Open Coloring Axiom

Open Coloring Aziom (OCA) is a Ramsey type axiom introduced by Stevo
Todorcevié¢ in [Tod89|. In the same monograph, it is proven that OCA follows
from PFA. In particular this result implies that MAy, + OCA is relatively
consistent. Now fix a separable metric space X.

Notation A.2.1. Let S, S” be two sets. Then [S]% stands for the set {s C S :
[s[ = 15"}

Definition A.2.2. A partition (or interchangeably a coloring) [X|* = MyUM,
is open if the set My = {(a,b), (b,a) € X x X : {a,b} € My} is open in the
product topology X x X \ diagonal.

Definition A.2.3. OCA is the following statement: Let [X]?> = My U M; be
an open coloring. Then either X has an uncountable My -homogeneous subset
or it can be covered by a countable family of M;-homogeneous subsets.

Theorem A.2.4 (Theorem 8.0 in [Tod89]). PFA implies OCA. O

Note that OCA can also be proven in ZFC i.e. without assuming existence
of large cardinals (see [Vel92]).

A.3 Combinatorics

In this section we will discuss some infinitary combinatorics. For more combi-
natorial results related to the subject see [Farl9].

Let us begin our discussion with stating the most basic combinatorial
method, the so-called pigeonhole principle. Let k < A be two infinite car-
dinals. If A = {J,c, Sa then, by the Axiom of Choice, |S,| = X at least for one
a € K.

Definition A.3.1. A family F C P(w) is called almost disjoint if for any
distinct a,b € F we have a Nb € Fin.

For a,b € P(w), we say b almost includes a if a \ b € Fin. This is denoted
by a C* b. Similarly we say b is almost equal to a if a/Ab € Fin. This is denoted
by a =* b. It is easy to observe that (P(w), C*) is a quasi order.

An order (X, <) is called o-directed if for every countable A C X there
exists a € X such that a < x for all a € A.

Proposition A.3.2. Let (b, : n € w) be a sequence of subsets of w. Let A
be the set of all subsets of w which are almost disjoint from each b,. Then
(A, C*) is o-directed.
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Proof. Take without loss of generality an increasing sequence (¢, : n € w) of A.
If C' = J,e, cn € A then there is nothing to do. Otherwise, C' N by, is infinite
for at most countably many n;. The finite case is trivial since C'\ |, by, is
clearly in A. Suppose that there are infinitely many n;. Now by eliminating the
elements from ¢; which are also in b,,, diagonally we get C' = J,,, ¢ \ U i<i bn,;
which is clearly in A and ¢, C* C’ for all n € w. O

Proposition A.3.3 (A-System lemma). Let F = {4, : @ € wi} be an un-
countable family of finite sets. Then there is an uncountable W C wy and a
finite set R such that A, N Ag = R for any two distinct o, 5 € W.

Proof. We start by an elementary observation:

Claim A.3.4. We may assume without loss of generality that all A, have the
same size.

Proof. Considering the partition F = J, . {4« : |4a] = Kk}, we see immedi-
ately that there is at least one n € w such that {4, : |A,.| = n} is uncountable
by the pigeonhole principle. 0

We will argue by induction on the size of elements of F. For n = 1, we
have clearly W = w; and R = (). Induction hypothesis: for n = k, there exist
desired W C w; and R. Let us examine the case n = k + 1.

Suppose there exists an x such that z € A, for uncountably many «. Then
consider the family of A, \ {z}, whose elements are of size k. By the induction
hypothesis, there exist an uncountable W’ C w; and a finite R’ such that
(A \ {z}) N (A \ {z}) = R for all a # 5 € W’. Therefore for W = W’ and
R=R U{x} we have A,NAg=Rforalla # € W.

Now suppose that for all x we have x € A, for countably many «. Then
we can construct a disjoint uncountable subfamily {B, : « € w;} C F by
induction on a. Let By = Ay. Suppose we have constructed B for all 8 < a.
As « is countable, we made at most N} = ¥, choice of elements for these
Bg. So there is some vy € wy such that A, N Bg = () for all 5 < a. Choose
B,=A,. O

Definition A.3.5. Let P be a poset. The bounding number of P is the minimal
cardinal of an unbounded subset of P. It is denoted by bp. In particular b
denotes the bounding number of (w*, <*).

Proposition A.3.6. MA, implies that b > k.

Proof. Suppose for a contradiction that there exists some unbounded family
F of cardinal k. Define the forcing notion P as follows: p € P if and only if
p = (Fp, 4p, fp) where

o I, € [F|™,
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e A, € Fin and

e f,: A, - w dominating all g € F}, on A,
equipped with the order p < ¢ if and only if

o F,CF,

e A, C A, and

* fo < [p
Claim A.3.7. P is ccc.

Proof. Indeed P is more than ccc : take any two distinct p,q € P. Then we
can easily find r < p, ¢ where F, = F,UF,, A, = A,UA;and f, : A,UA, = w
dominating £, on A, U A,. O

Now define D, = {p:n € A,} where n € w and Ey = {p: f € F,} where
f € F. Observe that D,, and Ey are dense in P. Then MA,, implies that there
isa{D,,E;:n€cwand f € F}-generic filter G. Therefore f = |J{f, : p € G}
is a total function dominating F. This contradicts the hypothesis. O]
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Appendix B

Stone Spaces and Corona Spaces

One of the main objects of this report is the Stone-Cech compactification. It
is defined by a universal property for a certain category of topological spaces.
In this appendix we will first review the construction of the Stone-Cech com-
pactification, Stone Duality and their relation for the zero dimensional locally
compact spaces. Then we will study Parovicenko’s characterization of w*.

B.1 Stone-Cech Compactification

The Stone-Cech compactification  is a functor which associates a topological
space X to a compact Hausdorff space X such that any continuous map
from X to a compact Hausdorff space factors through SX. Intuitively this is
the "largest" possible compactification satisfying this universal property. In
this section we will construct the Stone-Cech compactification of topological
spaces. We will omit most of the proofs which can be found in the first chapter
of [Wal74] or in the second chapter of [CN74].

Definition B.1.1. Let X be a topological space. The pair (K e) is a compact-
ification of X if K is a compact space and e : X — K is a dense embedding.

Definition B.1.2. Let X be a topological space. A Stone-Cech compactifica-
tion of X is (BX,e) such that:

e (85X, e) is a compactification of X where X is Hausdorff,

e the universal property below is satisfied : for any compact Hausdorff
space K and for any continuous function f : X — K, there exists a
unique continuous function gf : X — K such that the diagram

BX

P

x —1 K
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commutes.

Remark B.1.3. The Stone-Cech compactification of a completely regular
space is unique up to homeomorphism.

Notation B.1.4. Let X be a topological space. We let C'(X) denote the ring
of continuous functions f : X — C and C*(X) denote the subring of bounded
functions.

Definition B.1.5. A zero-set of X is a set equal to f~1({0}) for some f €
C(X). We will denote the family of zero-sets of X by 3(X).

The filters (respectively ultrafilters) on 3(X) are called the z-filters (re-
spectively z-ultrafilters) in the literature. There are several equivalent con-
structions of the Stone-Cech compactification. We will give the one which
uses z-ultrafilters.

Note that the definition of the Stone-Cech compactification could equiv-
alently be made in terms of complex valued continuous functions as follows:
(BX, e) is a compactification of X where e is a C* embedding (every bounded
function on X extends continuously to SX). Tychonoff’s characterisation of
completely reqular topological spaces

X is completely regular if and only if there is an embedding of X
in a product of copies of the closed unit interval

strongly suggests that this class is the appropriate class to study through
the compactifications when we construct the Stone-Cech compactification as
[0,1]9%) (see pg.8 in [Wal74]). We can reformulate Tychonoff’s characteri-
sation to build a bridge between the construction mentioned above and the
z-ultrafilter one, as follows:

X is completely regular if and only if 3(X) is a basis for the closed
sets of X.

Theorem B.1.6 (éech, Stone). Every completely reqular space has a Stone-
Cech compactification. ([l

The construction by z-ultrafilters is as follows: SX is the set of all z-
ultrafilters on X with the Stone topology determined by the basis

B={{uepX:Adu}:Ac3(X)}

And the canonical embedding e : X — SX is given by x — u, where u, is the
principal ultrafilter generated by x. One may check by hand (see pg. 24 in
[CN74]) that this construction works.
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By abuse of notation e(X) C X is traditionally identified with X. This
is the "trivial" part of the compactification. The rest SX \ X is called the
Stone-Cech remainder and denoted X*. A priori we do not know whether X*
is compact or not. The following result, whose proof can be found in [CN74|
(Lemma 2.9), gives a definitive answer to this.

Theorem B.1.7. X* is compact if and only if X is locally compact. U

B.2 Stone Duality

We assume that the reader is familiar with the definition and basic facts about
Boolean algebras. These can be found in the extensive work [Hal74]. In this
section we will set up the Stone Duality between Boolean algebras and Boolean
spaces (zero-dimensional compact Hausdorff spaces), and relate this to the
Stone-Cech compactification of totally disconnected zero dimensional spaces.
We will state the theorems without proofs which can be found in the second
chapter of [Wal74| or [CN4].

Let X be a topological space. Then clopen subsets of X form a Boolean
algebra denoted C(X).Therefore the more connected the space X is the smaller
C(X).

Generalised Cantor space 2! (with the product topology) are the prototypes
of Boolean spaces. Also note that any product of Boolean spaces is Boolean.

Definition B.2.1. Let B be a Boolean algebra. The Stone Space or the dual
space of B is the set of all ultrafilters S(B) of B with the topology generated
by the basis
{s(a) : a € B}

where s(a) = {u € S(B) : a € u}.

The map

s: B—P(S(B))
a— s(a)

is called the Stone map

Theorem B.2.2 (Stone Representation Theorem (algebraic)). Let B be a
Boolean algebra. Then S(B) is Boolean and s : B — C(S(B)) is an iso-
morphism. O

Let X be a Boolean space. Then C(X) is the dual algebra of X. Define
t(x) ={a € C(X):z € a}. Clearly

t: X — S(C(X))
x — t(x)
is well defined.
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Theorem B.2.3 (Stone Representation Theorem (topological)). Let X be a
Boolean space. Then t is a homeomorphism. 0]

Therefore the bidual of a Boolean algebra/space is itself.

Theorem B.2.4. Let X be a Boolean space and A be a Boolean algebra.
Then {x € 2% : continuous} is a subalgebra of 2% isomorphic to C(X) and

{x € 2 homomorphism} is a closed subspace of 24 homeomorphic to S(A).
]

Now we will study the homomorphisms and continuous mappings and see
that Stone Duality is indeed a contravariant functor between the categories of
Boolean algebras and of Boolean Spaces.

Let f: A — B be a Boolean algebra homomorphism. We define the dual
of f by

41 S(B) = S(A).
w [ (u)

f¢ is well defined since preimages of ultrafilters under morphisms are ultra-
filters. And similarly we define the dual of a continuous map ¢ : X — Y of
Boolean spaces by

el C(Y) = C(X).
ar f7(a)

Theorem B.2.5 (Stone Representation Theorem (morphisms)). Let f: A —
B be a Boolean algebra homomorphism and ¢ : X — Y be a continuous map
of Boolean spaces. Then

1. f4is continuous,

2. ¢ is a homomorphism

3. f is one-to one if and only if f¢ is onto,

4. @ is one-to one if and only if ¢? is onto and

5. diagrams below commute.

A = C(S(A)) X -5 5(C(X))
[ A
B —Z C(S(B)) Y —2 5(C(Y))
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This observation with the Stone Representation Theorem leads to the fol-
lowing important results for zero-dimensional totally disconnected spaces:

Theorem B.2.6. Let X be a totally disconnected zero-dimensional space.
Then pt : BX — S(C(X)) is a homeomorphism. O

Theorem B.2.7. X is strongly zero-dimensional if and only if BX 1is zero-
dimensional. 0J

Theorem B.2.8. Let X be a locally compact, zero-dimensional space. Set
F(X)={AecC(X): A is cocompact} and A = clgx AN X* for all A € C(X).
Then A — A is a Boolean algebra homomorphism from C(X) onto C(X*) with
associated filter F(X), and C(X™*) is isomorphic to C(X)/F(X). O

As a conclusion of this section observe that the dual algebra of fw is P(w),
w* is w/Fin, fX is C(X) and X* is C(X)/K(X) for zero-dimensional, locally
compact X. Moreover any continuous map ¢ : X* — Y* corresponds to

Pt C(Y)/K(Y) = C(X)/K(X).

B.3 Paroviéenko’s characterization of w*

“The space Pw is a monster with three heads. If one works in a
model in which the Continuum Hypothesis holds, then one will see
only the first head. This head is smiling, friendly, and makes you
feel comfortable working with fw.”

Jan van Mill

In this section we will see how X* behaves under CH. Parovi¢enko showed
in his 1963 paper that, for any X from a relevant clasq| CH implies that X* is
homeomorphic to w*. This section is based on [KV84, Chapter 11] and [Wal74,
Chapter 3|.

Let B be a Boolean algebra. We say that B satisfies condition H,, if for all
F € [B\{1}]=¥ and G € [B\ {0}]=* with F' < G (i.e for any finite I’ C F and
G’ C G we have VF', AG’) there is an element x € B such that F' < {z} < G.

From now on X refers to a zero-dimensional, locally compact, noncompact
Polish space. For the proof of the following lemma we will adopt an operator
algebras point of view rather than a topological one. Recall that such X is
o compact as X = |J, K. Define Xy = K, and K,, = K, \ K,,_1. We will
identify C(X) with ], C(X,) and K(X) with @, C(X,,).

Lemma B.3.1. C(X)/K(X) satisfies H,,.

1So-called Parovicenko spaces.
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Sketch of the proof. Let F,G C C(X)/K(X)\{0,1} be two countable families
satisfying ' < G. Enumerate F' and G as {f, : n € w} and {g, : n € w}
respectively. Assume without loss of generality that fo < f; < --- and gy >
g1 > - --. Take representatives F},, G,, € C(X) of f,, g,. Forall j € w there is a
k € w such that for all [ > k we can find a h; satisfying m;(f;) C h; C m(g;) for
all n < j where 7, are the projections. We find the desired h with F' < {h} < G
by diagonalising h;. O

The following corollary is therefore a trivial special case.

Corollary B.3.2. P(w)/Fin satisfies H,.

Definition B.3.3. Let B be a Boolean algebra. We say that B satisfies con-
dition R,, if for any F € [B\ {1}]=*, G € [B\ {0}]=* and H € [B|=* such
that

1. F <@,

2. VE' € [F|™“VG € [G]**Vh e H : h £ F' and ANG' £ h,
3. F<{z} <@,

4. Vh e H:h £z and = £ h.

The following lemma will be required for the proof of the main theorem.

Lemma B.3.4. If a Boolean algebra B satisfies condition H,,, then it satisfies
condition R,,.

Proof. Let F,G and H be as in Definition [B.3.3] (1) and (2). Enumerate
F={fi:new}, G={g, :n € w}and H = {h, : n € w}. For each
h € H and finite F' C F we have that (VF")° A h # 0, therefore there exists,
by applying the condition H,, for all n € w, an element d,, € B\ {0} such that
d, < h, and f Ad, =0 for all f € F. Similarly we can find e, € B\ {0} such
that {e,} < G and e, A h,, = 0.

We can indeed assure that e, A d,, = 0 for all n,m € w. Now define for all
n e w, fn:fn\/en and g, = g, N d;.

Observe that for any n,m € w we have \/ ., fi < No<j<n Gj- By Ho, we
can find x € B such that for all n,m € w

]

Now we can state and prove the main result of this section. The sketch of
the proof is due to van Mill.

33



Theorem B.3.5 (Parovi¢enko’s Theorem). Assume CH. If B is a Boolean
algebra of cardinality at most ¢ satisfying H,, then B is isomorphic to P(w)/Fin.

Proof. Let B and C be two Boolean algebras satisfying H,, such that |B|, |C| <
¢. By CH enumerate B = {b, : @ € w1} and C = {¢, : @ € wy}. Without loss
of generality assume that by = 0 and ¢y = 0. We will reason by "back and
forth". By transfinite induction on o we will construct subalgebras B, C B ,
C. C C and isomorphisms o, : B, — C, such that

1. by € B, and ¢, € C,,
2. ifﬂ<athen85§6a,cggcaanda[15’5:05.

Let By = Cy = {0,1} and oy be defined canonically. Suppose that Bg,Cs
and o are defined for all 8 < a < w; satisfying (1) and (2). If by € Upsc, Bs
and ¢, € (e, Cs then define B, = (Uge, B » Co = Upe, Cs and o4 € (e, 05-

Now suppose without loss of generality b, ¢ Uﬁea Bsg = F. Let 0 =
Usca s Put Fo = {f € F: f <bu}, 1 = {f € F: f > by} and
Fo=F\ (FoUF).

By Lemma [B.3.4 there is an element ¢ € C such that o(Fy) < {c} < o(F)
and for all ¢ € o(F;) we have ¢ £ ¢ and ¢ £ ¢. If we put o(b,) = ¢ and
o(bS) = ¢ then o can be extended to an isomorphism between the generated
algebras 6 : ((F U {b,})) — ((o(F)U{c})). If co & ({o(F)U{c})) we do the

same thing in the converse direction. O
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