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Chapter 1

Introduction

This report is in set theory, more specifically at the intersection between set-
theoretic topology and Boolean algebras. Its main goal is to study homeomor-
phisms of Stone-Čech remainders of zero-dimensional locally compact Polish
spaces. The origin of the theme lies in the study of Boolean algebra automor-
phisms of P(ω)/Fin, where ω is the discrete countable space and Fin ⊆ P(ω)
is the ideal of finite subsets. The subject has further been developed for non-
commutative operator algebras by Ilijas Farah and his collaborators. The
introduction has three sections which contain respectively the contents of our
work, the setting of the problem, and its historical development.

1.1 Contents of the report

The goal of this work is understanding continuous maps, say φ, between Stone-
Čech remainders, and how these behave in terms of continuous maps between
the underlying spaces. We will call φ trivial, if it can be defined in terms of a
map between the underlying spaces in a natural way. Our principal question
is the following: Are all homeomorphisms between Stone-Čech remainders
trivial?

The main content of this report summarises some of the results of [FM12]
and [Vel93]. Therefore we had to first assimilate a number of extra-curricular
topics such as the Open Coloring Axiom, Parovičenko’s theorem on corona
spaces, and some infinite combinatorics. Sources are indicated below. As a
result, the first half of the internship was dedicated to these prerequisites,
and only the second half to reading research papers. However the report is
in reverse order. It focuses on [FM12] and [Vel93], with all the interesting
groundwork collected in final appendices.

• Appendix A is a survey on Martin’s Axiom (MAℵ1 ; see Appendix A.1),
Open Coloring Axiom (OCA; see Appendix A.2) and infinitary combina-
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torics. For preparing this chapter we studied related chapters of [Tod89]
and [Far19].

• Appendix B is a review of the Stone-Čech compactification, Stone dual-
ity and their relation for zero-dimensional, locally compact spaces. We
studied related chapters of [CN74] and [Wal74] and quoted the required
results there. In this appendix we also studied Parovičenko’s character-
ization of ω∗ which leads to a negative answer for our problem as we
mentioned earlier. For this we referred to [KV84, Chapter 11].

Then we move to [FM12]. Farah and McKenney show the following:

Assume OCA+MAℵ1 . Let X, Y be zero-dimensional, locally com-
pact, non compact, Polish spaces. Then every homeomorphism
φ : X∗ → Y ∗ is trivial.

We can divide the proof of this theorem into two: showing that embeddings
of P(ω)/Fin → C(X)/K(X) are trivial under MAℵ1 +OCA and amalgamating
these trivial embeddings to construct trivial homeomorphisms. The present
report covers the first part of this proof.

We first study the results for definable (Borel) automorphisms; this is done
in ZFC. Then we study the P -ideals and tree-like families for a proof of “embed-
dings are trivial”. All proofs in this report follow the “blueprint” introduced by
Veličković in [Vel93]. In fact this “blueprint” is the one that gets used over and
over even when treating more complicated objects and their automorphisms.

1.2 Setting of the problem

We shall start this section with some words on the motivation of this work.
Topology is a branch of mathematics which has deep roots. Topological ideas
are used nowadays roughly in every domain of mathematics since it aims to
generalise what we know occurs in the reals on more general metric spaces. It
has been in great interaction with set theory historically that the literature on
set-theoretic topology is considerably large.

An embedding of a topological space X as a dense subset of a compact space
is called a compactification of X. It is often useful to embed topological spaces
in compact spaces, because of the special properties that compact spaces have.
Stone-Čech is the largest compact space in which a locally compact space X
sits densely, which factorises all continuous maps from X into a compact space
K as a universal property.

One can not see much in compactification itself, yet the remainder is much
more flexible. Therefore corona spaces becomes an exciting place where topol-
ogists, set theorists, infinite combinatorists, Boolean algebraists and analysts
meet.
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We study classical subclasses of the class of completely regular spaces; X
will stand for one such space. Denote the Stone-Čech remainder (also called
corona space) βX \X by X∗. Our main objects of interest will be continuous
maps φ : X∗ → Y ∗. We would like to understand them in terms of continuous
functions F between the underlying spaces X and Y which extend to X∗ and
Y ∗. Ideally for all φ we would like to find such F . This would decrease the
complexity of the study of continuous functions between corona spaces. This
amounts to understanding what information about X∗ is encoded by X itself.
For that purpose we will use the following notion: φ is called trivial, if there
exists a continuous F : X → Y such that φ = βF \ F where βF is the unique
continuous extension of F to βX. Note that existence of these functions does
not depend on set theory, as involving only countable information between
Polish spaces. In other words they are absolute. Details on the Stone-Čech
compactification can be found in Appendix B.1.

We will focus on the zero-dimensional case. More precisely, the space X
under study will always be zero-dimensional, locally compact, non compact
and Polish. In this context, Stone duality (see Appendix B.2) provides a
correspondence between the topological notions in the left column and their
Boolean algebraic counterparts in the right column:

βX C(X)
X∗ C(X)/K(X)

φ : X∗ → Y ∗ φd : C(Y )/K(Y ) → C(X)/K(X)

where C(X) denotes the Boolean algebra of clopen sets of X, K(X) ⊆ C(X)
is the compact-open ideal and φd is the corresponding Boolean algebra homo-
morphism. Therefore one can work with Boolean algebras and their homomor-
phisms instead of working directly in the topological setting which is arguably
more difficult to handle. The prototype of structures in the scope of this work
is the Boolean algebra P(ω)/Fin which is the dual of ω∗ where ω is the discrete
space of integers given by the usual order topology. Pioneering work in this
domain has been made on the automorphisms of P(ω)/Fin. We will mention
it in more detail below.

The following question will be the main interest of this report:

Are all homeomorphisms φ : X∗ → Y ∗ trivial?

We will see that an answer to this question depends on the set theoretical
ambient.

1.3 Development of the topic

The Continuum Hypothesis (CH) implies that Stone-Čech remainders of zero-
dimensional, locally compact, non compact and Polish spaces are all homeo-
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morphic. In particular they are homeomorphic to ω∗. This is a consequence
of Parovičenko’s characterisation of ω∗ from his 1963 paper [Par63] (for some
details see Appendix B.3). From Rudin’s 1956 paper [Rud56] we know that
under CH we can construct a nontrivial automorphism of P(ω)/Fin. Therefore
CH produces a negative answer to our main question above.

The first positive answer to the question restricted to ω∗ is given by Shelah
in [She82]. There he shows that “all automorphisms of P(ω)/Fin are trivial”
is consistent with ZFC. This arguably “difficult” proof uses the oracle chain
condition. Then Shelah and Steprāns in their 1988 paper [SS88]. In this
paper they show that the Proper Forcing Axiom (PFA) implies that every
automorphism of P(ω)/Fin is trivial. One can refer to survey paper [FGVV22]
for details of Shelah’s construction.

MAℵ1 was introduced by Donald A. Martin and Robert M. Solovay in their
1970 paper [MS70]. This axiom has been very fruitful by giving numerous
interesting combinatorial, analytic and topological consequences (see [Fre08]).
Todorčević synthesised the OCA and proved its relative consistency from PFA
in his 1989 monography [Tod89]. OCA is an uncountable generalisation of
the Baire category theorem, and is known to contradict CH as MAℵ1 . These
Ramsey type axioms are used to study the automorphisms of P(ω)/Fin by
Veličković in his 1990 article [Vel93]. There Veličković proved that every au-
tomorphism of P(ω)/Fin is trivial from another perspective.

Farah extened the study of the “behaviour under OCA+MAℵ1” to different
spaces, and gave a new prospective to Veličković’s theorem by stating and prov-
ing the OCA lifting theorem in his monograph [Far00]. He also systematised
the problem by introducing the weak extension principle wEP (X, Y ).

wEP (X, Y ) is the following statement:

For any continuous function F : X∗ → Y ∗, there exists a clopen
partition X∗ = U0∪U1 such that F [U0] is nowhere dense in Y ∗ and
F ↾ U1 lifts to a continuous F1 : βX → βY where F1[X] ⊆ Y .

Farah and McKenney showed in their 2018 paper [FM12] the following:
OCA+MAℵ1 implies that homeomorphisms between Stone-Čech remainders of
zero-dimensional, locally compact, non compact, Polish spaces are trivial.

This analysis was brought to the noncommutative setting again by the
pioneering work of Farah, who showed that OCA implies all automorphisms of
the Calkin algebra are inner, and by further work of his students. A survey of
the current state of the art is [FGVV22].
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Chapter 2

General Notation

In this chapter we will introduce some basic definitions which will be present
throughout the text and derive some elementary results. The reader who is
familiar with the subject may safely skip this chapter. Remind that X is always
assumed as a zero-dimensional, locally compact, non compact, Polish (in other
words separable and completely metrisable) space unless stated otherwise.

Notation 2.0.1. C(X) will denote the algebra of clopen subsets of X and
K(X) will denote its ideal of compact-open sets.

Proposition 2.0.2. There is an increasing sequence of compact-open sets
⟨Kn : n ∈ ω⟩ such that X =

⋃
n∈ω Kn.

Proof. X is Polish and therefore it is second countable. Then there is a count-
able clopen basis B = {Bn : n ∈ ω}. By locally compactness every point
x ∈ X has an open neighbourhood Vx such that cl(Vx) is compact. Then for
every x ∈ X, there is some Bx ∈ B such that x ∈ Bx ⊆ Vx. Therefore we have
cl(Bx) = Bx is compact for all x and X =

⋃
x∈X cl(Bx). Yet B is countable so

there is a countable I ⊆ X such that X =
⋃

x∈I Bx. By identifying I with ω
and defining Kn =

⋃
i≤n cl(Bi) we finish the proof.

Observation 2.0.3. Such an increasing sequence ⟨Kn : n ∈ ω⟩ forms a basis
of K(X) as for all K ∈ K(X), there is some n ∈ ω such that K ⊆ Kn.

Proof. Let K ⊆ X a compact subspace. Then {Kn ∩K : n ∈ ω} is an open
cover of K. By compactness of K, there is some n ∈ ω such that K = Kn ∩K
since Kn is an increasing sequence.

Let X and Y be two spaces carrying an algebraic structure compatible
with the topology. Let I ⊆ X and J ⊆ Y be two definable (e.g., Borel, or
analytic) substructures inducing quotients X/I and Y/J . Let φ : X/I → Y/J
be a morphism. A lifting is a morphism φ∗ : X → Y such that
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X Y

X/I Y/J

φ∗

πI πJ

φ

commutes.
When X and Y are zero-dimensional, locally compact Polish spaces, by

Stone Duality B.2, the dual of X∗ is C(X)/K(X) and the dual of a continuous
map φ : X∗ → Y ∗ is a Boolean algebra homomorphism φd : C(Y )/K(Y ) →
C(X)/K(X).

Definition 2.0.4. Let e : X → ω be a continuous map. Then e is called
compact-to-one if e−1(n) ∈ K(X) for all n ∈ ω.

Observation 2.0.5. Let e : X → ω be compact-to-one. Then the homomor-
phism defined by

Fe : P(ω) → C(X)

a 7→ e−1(a)

induces canonically a homomorphism φe : P(ω)/fin → C(X)/K(X) such that

P(ω) C(X)

P(ω)/Fin C(X)/K(X)

Fe

π π

φe

commutes.

Proposition 2.0.6. φe is injective if and only if e is bounded on compacts.

Proof. Suppose that e is bounded on compacts. Let a, b ∈ P(ω) such that
φe(a) = φe(b) i.e e−1(a)△e−1(b) ∈ K(X). Then e−1(a△b) ∈ K(X). Therefore
by the assumption a△b ∈ Fin.

For the converse, suppose for a contradiction that φe is injective and there
is K ∈ K(X) such that e is not bounded on K. Define the increasing sequence
of compacts ⟨Kn : n ∈ ω⟩ by Kn =

⋃
{e−1(i) : i ≤ n}. Then X =

⋃
n∈ω Kn. So

there is some n ∈ ω such that K ⊆ Kn. Let a = e(K). By the hypothesis a is
infinite and for all i ∈ a\n we have e−1(i) = ∅ since K ⊆ Kn. We have therefore
φe(a \ n) = ∅. Since φe is injective, a \ n ∈ Fin which is contradictory.

Definition 2.0.7. A homomorphism φ : P(ω)/Fin → C(X)/K(X) is called
trivial if there exists a continuous compact-to-one e : X → ω such that φ = φ∗

e.

Observation 2.0.8. In the case φ ∈ Aut(P(ω)/Fin) triviality is equivalent to
existence of a bijection e : ω \ a → ω \ b for some a, b ∈ Fin such that φ = φe.
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Chapter 3

Borel Liftings

In this chapter we will give proofs of some classical Borel lifting theorems.
All the results are proven in the ZFC without need of any additional axioms.
Throught this chapter we identify P(ω) with 2ω by mapping x ⊆ ω to its
characteristic function χx. This endows P(ω) with the product topology and
the resulting space is called the Cantor space.

3.1 Borel automorphisms

Theorem 3.1.1 (Theorem 1.1 in [Vel93]). Let φ ∈ Aut(P(ω)/Fin). Suppose
that there is a dense Gδ subset X ⊆ P(ω) and a continuous function F : X →
P(ω) such that φ[a] = [F (a)] for all a ∈ X. Then φ is trivial.

Proof. We will first consider that X = 2ω, then generalise the result i.e φ has
a continuous lifting. Denote the standard opens of 2ω as Ns where s ∈ 2<ω.
For s, t ∈ 2<ω we say that s forces t if F (Ns) ⊆ Nt. Construct by induction
the increasing integer sequence ⟨ni : i ∈ ω⟩ and functions fi : [ni, ni+1) → 2
such that

1. for all i ∈ ω and all s ∈ 2ni we have s ∪ fi forces some t ∈ 2ni ;

2. for all i ∈ ω, s, s′ ∈ 2ni , k > ni+1 and g : [ni+1, k) → 2 if s ∪ fi ∪ g forces
some t and s′ ∪ fi ∪ g forces some t′ then t(j) = t′(j) for all j ≥ ni+1.

Claim 3.1.2. Above sequence and functions are well defined.

Proof. Suppose that we have fi−1 and ni. We will to construct fi and ni+1

following (1) and (2).
Let {sj : j ∈ 2ni} be an enumeration of 2ni . Define partial functions

f j
i for j ∈ 2ni inductively as follows: f 0

i = fi−1. Suppose f j
i is defined and

domf j
i ∩ ni = ∅. Since F is continuous and Nsj∪fj

i
is compact we would find

9



eventually an f j+1
i ⊇ f j

i such that sj ∪ f j+1
i forces a t ∈ 2ni . Define gi = f 2ni

i

(to be used at the end of the proof of the Claim). By construction fi = f ⊇ gi
would satisfy (1).

For the condition (2) we will use an auxiliary definition. Let s, s′ ∈ 2ni . A
partial function f is a witness for ⟨s, s′⟩ if there is some n > ni such that

3. f : [ni, n) → 2 and

4. for any k > n, g : [n, k) → 2, t, t′ ∈ 2<ω such that s ∪ f ∪ g forces t and
s′ ∪ f ∪ g forces t′ then t(j) = t′(j) for all j ≥ n.

Claim 3.1.3. For every partial function h : [ni, k) → 2 and every s, s′ ∈ 2ni

there is a witness f ⊇ h of ⟨s, s′⟩.

Proof. Suppose for a contradiction that there exist s, s ∈ 2ni and h : [ni, k) → 2
such that there is no f extending h which witness ⟨s, s′⟩. Then we can define
sequences of partial functions ⟨hj : j ∈ ω⟩ (by iteratively defining h0 = h
and extending hj by using the hypothesis), ⟨tj : j ∈ ω⟩, ⟨t′j : j ∈ ω⟩ and
an increasing sequence of integers ⟨lj : j ∈ ω⟩ such that s ∪ hj forces tj and
s′ ∪ hj forces t′j and tj(lj) ̸= t′j(lj). Then define x = s ∪

⋃
{hj : j ∈ ω} and

x′ = s′ ∪
⋃
{hj : j ∈ ω}. Then we have clearly x =∗ x′. Yet F (x) ̸=∗ F (x′)

which is a contradiction since F lifts φ. □

For the condition (2), we will apply the Subclaim repeatedly for each
⟨s, s′⟩ ∈ 2ni × 2ni . Enumerate 2ni × 2ni as {⟨sj, s′j⟩ : j ∈ 22ni}. Define by
induction the ⟨gji : j ∈ 22ni⟩ and ⟨nj

i :∈ 22ni⟩ as follows: Define g0i = gi and
n0
i = ni. Let gji and nj

i be given. By the Subclaim we can find nj+1
i > nj

i and
gj+1
i such that gj+1

i ⊇ gji where gj+1
i : [ni, n

j+1
i ) → 2 and gj+1

i is a witness of
⟨sj, s′j. Let fi+1 = g2

2ni

i and ni+1 = n22ni

i . This concludes the proof of the
Claim. □

Now define aϵ =
⋃
{[ni, ni+1 : i = ϵ mod 3} and f ϵ =

⋃
{fi : i = ϵ

mod 3}. Then consider the function F 0(x) = F (x ∪ a1 ∪ a2) \ F (a1 ∪ a2).
Since φ is a homomorphism, F 0(x) =∗ F (x) for all x ⊆ a0. Then we can find
functions hi such that

1. hi : P([n3i, n3i+1)) → P([n3i−1, n3i+2)) for i ∈ ω,

2. F 0(x) =
⋃
{hi(x ∩ [n3i, n3i+1)) : i ∈ ω}.

Claim 3.1.4. For all but finitely many i ∈ ω we have

hi(u ∪ v) = hi(u) ∪ hi(v)

for all u, v ∈ P([n3i, n3i+1)).

Proof. Assume for a contradiction that there is an infinite A ⊆ ω such that fr
every i ∈ A there are ui, vi ⊆ [n3i, n3i+1) such that hi(ui ∪ vi) ̸= hi(ui)∪hi(vi).
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Let u =
⋃
{ui : i ∈ A} and v =

⋃
{vi : i ∈ A}. Then F (u∪ v) ̸=∗ F (u)∪ F (v).

This contradicts that φ is a homomorphism. □

Claim 3.1.5. hi maps singletons to singletons for all but finitely many i ∈ ω.

Proof. Assume for a contradiction that there is an infinite A ⊆ ω and li ∈
[ni, ni+1) for all i ∈ A such that hi({li}) is not a singleton. Take mi ∈ hi({li})
for all i ∈ A and define y = {mi : i ∈ A}. Then there is no x such that
F (x) =∗ y. This contradicts φ is surjective. □

Therefore we can define a function h0 : a0 → ω by h0(l) = k if l ∈
[n3i, n3i+1) and gi({l}) = k. Then h0 induces φ on P(a0)/Fin. Similarly
we can find h1 and h2 inducing φ respectively on P(a1)/Fin and P(a2)/Fin.
Combining these three functions and changing on a finite set would give a
bijection h : ω → ω defined almost everywhere witnessing that φ is trivial.

To finish the proof we will consider the general case that F is defined on
a dense Gδ set X. Then there are dense open sets Un such that X =

⋂
n Un.

Then construct inductively an increasing sequence ⟨mk : k ∈ ω⟩ and a sequence
of finite functions ⟨fk : k ∈ ω⟩ such that fk : [mk,mk+1[→ 2 and Ns∪fk ⊆ Uk for
every s ∈ 2mk . Then let f ϵ =

⋃
{fk : k = ϵ mod 2} and aϵ =

⋃
{[mk,mk+1) :

k = ϵmod2}. Then for every x ⊆ aϵ we have x ∪ f 1−ϵ ∈ X. Therefore we can
define F ϵ : P(aϵ) → 2 by F ϵ(x) = F (x ∪ f 1−ϵ) \ F (f 1−ϵ). As above we can
find h0 and h1 inducing φ on P(a0)/Fin and P(a1)/Fin. By combining them
we obtain the desired result.

An automorphism φ of P(ω)/Fin is called a Borel automorphism if there
is a Borelian map F : P(ω) → P(ω) which lifts to φ.

Corollary 3.1.6. Every Borel automorphism of P(ω)/Fin is trivial

Proof. Let φ ∈ Aut(P(ω)/Fin) be a Borel automorphism. Then it is a well
known fact that its graph Γ(φ) ⊆ 2ω × 2ω is Borel with countable sections. By
Lusin-Novikov Theorem (see [Kec95, 18.10]), these sets can be uniformised by
Borel sets. Thus there is a function F : 2ω → 2ω lifting φ and Γ(F ) is Borel.
It is also well known (see [Kec95, 8.38]) that such F is continuous on a dense
Gδ set X ⊆ 2ω. By Theorem 3.1.1 we achieve the desired result.

3.2 Countably many Borel choice functions

Theorem 3.2.1 (Theorem 1.2 in [Vel93]). Let φ ∈ Aut(P(ω)/Fin) and F :
P(ω) → P(ω) such that φ(a) =∗ F (a) for every a ∈ P(ω). Suppose there exist
Borel functions Fn : P(ω) → P(ω) for n ∈ ω satisfying for every a ∈ P(ω)
there exists n such that F (a) =∗ Fn(a). Then φ is trivial.
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Define the trivial ideal

J = {a ∈ P(ω) : φ ↾ a is trivial}.

Let (P,≤) be a poset. A subset X ⊆ P is called cofinal if for every p ∈ P there
is some x ∈ X such that p ≤ x. Proof of the theorem requires the following
lemmas.

Lemma 3.2.2. J is not a maximal non principal ideal.

Proof. Suppose for a contradiction that J is a maximal nonprincipal ideal.
Fix a dense Gδ subset X ⊆ P(ω) such that Fn ↾ X is continuous for all n.

Claim 3.2.3. There exist a coloring of ω = a0 ∪ a1 and tϵ ⊆ aϵ for ϵ ∈ 2 such
that if x ⊆ aϵ then x ∪ t1−ϵ ∈ X.

Proof. Fix a decreasing sequence ⟨Un : n ∈ ω⟩ of dense open sets such that
X =

⋂
n∈ω Un. Build inductively an increasing sequence of integers ⟨ni : i ∈ ω⟩

with n0 = 0 and a sequence of sets ⟨si : i ∈ ω⟩ such that si ⊆ [ni, ni+1) and for
all x ∈ P(ω) if x ∩ [ni, ni+1) = si then x ∈ Ui. Define aϵ =

⋃
{[ni, ni+1) : i = ϵ

mod 2} and tϵ =
⋃
{si : i = ϵ mod 2} for ϵ ∈ 2.

Fix an ϵ ∈ 2. Pick x ⊆ aϵ. Then it is clear that x ∪ t1−ϵ ∈ Un for all
n ∈ ω since (x ∪ t1−ϵ) ∩ [ni, ni+1) = si for all i = 1− ϵ mod 2. Therefore this
construction works. □

Now we return to the proof of the Lemma 3.2.2 and fix a coloring as in the
Claim 3.2.3. Suppose that φ is nontrivial on a0 and define a function

Gn(x) = Fn(x ∪ t1) ∩ F (a0)

for each n ∈ ω. Since each Fn is continuous on X, Gn are also continuous on
P(a0) and for every x ⊆ a0 there exists n ∈ ω such that Gn(x) =

∗ F (x). Let
I be the restriction of J to P(a0). Then for every a ∈ I pick a one-to-one
function ea : a → ω inducing φ on a and define the function Ea : P(a) → P(ω)
by Ea(x) = ea[x]. Then Ea is continuous and Ea(x) =

∗ F (x) for all x ⊆ a.
Now fix an a ∈ I and define the sets

Da
n,m = {x : Ea(x) \m = Gn \m}

where n,m ∈ ω. Observe that P(a) =
⋃

n,m∈ω D
a
n,m. Then there are some

n,m ∈ ω such that Da
n,m is dense in some clopen U ⊆ P(a) since countable

union of nowhere dense sets would be nowhere dense.
Now define the quintuples ⟨i, l,m, s, t⟩ such that i, l,m,∈ ω, t ⊆ i and

s : doms → ω is a function with doms ∈ ω. Let {⟨in, ln,mn, sn, tn⟩ : n ∈ ω} be
an enumeration of all these quintuples. Define a function Hn on P(a0) by

Hn(x) = (Gln((x \ in) ∪ tn) \mn) ∪ sn[x ∩ dom(sn)].
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{Hn : n ∈ ω} is a family of continuous functions on P(a0) such that for
every a ∈ I there exists n ∈ ω such that Hn(x) = ea[x] for all x ⊆ a. Then
define the sequence

In = {a ∈ I : Hn(x) = ea[x] : for all x ⊆ a}.

Now if we suppose that one of In is cofinal in (I,⊆∗) we can define e =⋃
{ea : a ∈ In} since for any a, b ∈ In we have ea is equal to eb on a ∩ b.

Therefore e induces φ on every a ∈ I. Therefore e induces φ on a0 which is a
contradiction.

So none of In is cofinal in I. Then we can find a decomposition a0 =⋃
n∈ω bn such that bn ∈ I. Therefore there is no b ∈ I with bn ⊆∗ b for all n.

Let A be the set of all b ⊆ a0 which are almost disjoint from all the bn. Then
A ⊆ I is a σ-directed sub ideal by A.3.2. Let An = A∩ In. Then there exists
n ∈ ω such that An is cofinal in A. Now define e =

⋃
{ea : a ∈ An} as above.

This then the following claim implies that φ is trivial on a0.

Claim 3.2.4. There exists k ∈ ω such that e induces φ on a0 \
⋃

i<k bi.

Proof. Suppose for a contradiction that T = {n ∈ ω : e ↾ bn is not trivial}
is infinite. Then for each m ∈ T pick an infinite cm ⊆ bm such that e[cm] ∩
F [cm] ∈ Fin. Moreover for any m, k ∈ T , we can find cm and ck satisfying
e[cm]∩F (ck) ∈ Fin by shrinking cm, ck. Therefore we can find d ⊆ ω such that
F (cm) ⊆∗ d for all m ∈ T . Since F is surjective, there is c ⊆ ω with F (c) =∗ d.
Therefore cm ⊆∗ c for all m ∈ T . Then we can pick im ∈ cm ∩ c such that
e(im) ̸∈ F (c). Define b = {im : m ∈ T}. Then clearly b ∈ A. This implies that
F (b) =∗ e[b]. Also since b ⊆ c we have F (b) ⊆∗ F (c). Yet e[b] ∩ F (c) ∈ Fin by
definition of b. Contradiction. □

So T should be finite. Then e induces φ ↾ a for all a in the ideal generated
by A and {bm : m ̸∈ T}. Because this ideal is dense in P(u) where u =
a \
⋃

m∈T bm.

Proof of the Theorem 3.2.1. Now we return to the proof of the theorem. As-
sume that φ is nontrivial and build inductively disjoint sets an and xn such
that for every n ∈ ω

• xn ⊆ an,

• φ is nontrivial on ω \
⋃

i≤n ai,

• for every ω \
⋃

i≤n ai we have

Fn

(⋃
i≤n

xi ∪ x

)
∩ F (an) ̸=∗ F (xn).

13



Suppose ⟨ai : i ∈ ω⟩ and ⟨xi : i ∈ ω⟩ are constructed. Let cn = ω \
⋃

i<n ai
and zn =

⋃
i<n xi. By the Lemma 3.2.2 there is a decomposition cn = dn ∪ en

such that φ is nontrivial on both components. For y ⊆ dn define

Bn(y) = {x ⊆ en : Fn(zn ∪ y ∪ x) ∩ F (dn) =
∗ F (y)}.

By definition, Bn(y) ⊆ P(en) is a Borel set.

Claim 3.2.5. There exists y ⊆ dn such that Bn(y) is not comeager.

Proof. Suppose for a contradiction that Bn(y) is comeager for all y ⊆ dn.
Let Γ(φ ↾ dn) be the graph of φ ↾ dn. For any ⟨y, u⟩ ∈ Γ(φ ↾ dn) we have
{x ⊆ en : Fn(zn ∪ y ∪ x) ∩ F (dn) =

∗ u} is comeager. Therefore Γ(φ ↾ dn) is
analytic can be uniformised on a comeager set by a continuous function. Thus
by the Theorem 3.1.1 we have φ is trivial on dn. Yet this contradicts that φ is
nontrivial on dn. □

Now we will construct the sequences ⟨an : n ∈ ω⟩ and ⟨xn : n ∈ ω⟩
inductively. Fix some y ⊆ dn and a standard clopen set Ns ⊆ P(en) such that
Bn(y) is meager in Ns. Let u0 = s−1(0) and u1 = s−1(1) and u = u0∪u1. Find
a decomposition en \ doms = e0n ∪ e1n and subsets tϵ ⊆ eϵn where ϵ ∈ 2 as done
in the Claim 3.2.3 satisfying u∪ x∪ t1−ϵ /∈ Bn(y) for all x ⊆ eϵn. Then there is
some ϵ ∈ 2 such that φ is nontrivial on eϵn. Assume without loss of generality
that this is the case for ϵ = 0. Set an = dn ∪ u0 ∪ e1n and xn = y ∪ u1 ∪ t1.

Let x =
⋃

n∈ω xn. For every n ∈ ω we have Fn(x)∩F (an) ̸=∗ F (xn). Yet by
the hypotheses of the theorem there is some n ∈ ω such that Fn(x) =

∗ F (x).
Contradiction.
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Chapter 4

Embedding P(ω)/Fin into
C(X)/K(X)

In the first two section of this chapter, we prove some lemmas which are the
main components of the proof of the main theorem of this report. These lem-
mas are generalisations of the analogues from [Vel93] which are given in [FM12]
without poofs. Then by using these lemmas, we prove the main theorem in
the third section.

Fix for the rest of the chapter an injective homomorphism φ : P(ω)/Fin →
C(X)/K(X), a corresponding function F : P(ω) → C(X) and define the ideal
of trivial sets

J = {a ∈ P(ω) : φ ↾ a is trivial}.

4.1 P -ideals

In this section we will study the triviality with respect to P -ideals.

Definition 4.1.1. An ideal I ⊆ P(ω) is called a P -ideal if for each countable
sequence ⟨An ∈ I : n ∈ ω⟩ there is an A ∈ I such that An ⊆∗ A for all n ∈ ω.

Lemma 4.1.2 (Lemma 2.4 in [Vel93]). Assume OCA and MAℵ1. If J is a
dense P -ideal then φ is trivial.

Proof. For every a ∈ J fix a Za ∈ C(X) and a compact-to-one function ea :
Za → a such that φ([a]) = [Za] and φ([b]) = [e−1(b)] for all b ⊆ a. Then define
fa : ω → C(X) by fa(n) = e−1({n}).

Define the partition [J ]2 = M0 ∪ M1 as {a, b} ∈ M0 if and only if there
is some n ∈ a ∩ b such that fa(n) ̸= fb(n). Since this condition is existential,
M0 is open in the topology obtained by identifying a ∈ J with (a, fa) ∈
P(ω)× C(X)ω.
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Claim 4.1.3. There is no uncountable M0-homogeneous subset H ⊆ J .

Proof. Suppose for a contradiction that these is an M0-homogeneous H with
|H| = ℵ1. Since J is a P -ideal, there exists H ⊆ J such that for every
a ∈ H there is a b ∈ H with a ⊆∗ b and order type of (H,⊆∗) is ω1. OCA
implies that H has an uncountable subset which is either M0-homogeneous or
M1-homogeneous. By shrinking, we shall suppose that the subset is H.

Suppose for a contradiction that H is M1-homogeneous. Define ā =
⋃
H

and f̄ =
⋃

a∈H fa with f̄ : ā → C(X). Then clearly a ⊆∗ ā and fā ↾ (ā ∩ a) =∗

fa ↾ (ā ∩ a) for all a ∈ H. Choose n such that for uncountably many a ∈ H
we have a \ n ⊆ ā and fā ↾ (a \ n) = fa ↾ (a \ n). Take such a, b ∈ H with
fa ↾ n = fb ↾ n. Then {a, b} ∈ M1, which is contradictory. Therefore H is
M0-homogeneous.

Let ⟨Kn : n ∈ ω⟩ be an increasing compact cover of X which exists the
Proposition 2.0.2. Define a poset P by p ∈ P if and only if p = (Ap,mp, Hp)
where mp ∈ ω, Ap ∈ C(Kmp) and Hp ∈ [H]<ω satisfying for any a, b ∈ Hp there
is an n ∈ a ∩ b such that either

fa(n) ∩ Ap = ∅ and fb(n) ∩ Ap ̸= ∅

or
fb(n) ∩ Ap = ∅ and fa(n) ∩ Ap ̸= ∅

equipped with the order p ≤ q if and only if mp ≥ mq, Ap ∩ Kmq = Aq and
Hp ⊇ Hq.

Claim 4.1.4. P is ccc.

Proof. Let X ⊆ P be uncountable. By the pigeonhole principle we may assume
that there is a fix m ∈ ω and A ∈ C(Km) such that mp = m and Ap = A for
all p ∈ X. Moreover we may assume that |Hp| is the same for all p ∈ X.

Let ap be the ⊆∗-minimal element of Hp for each p ∈ X. Find np such that
for all a ∈ Hp satisfying fap ↾ (ap \ np) ⊆ fa and eap(Km) ⊆ np.

Similarly we may assume that for some fixed n we have np = n for all
p ∈ X. Find p, q ∈ X such that fap ↾ n = faq ↾ n. As we have {ap, aq} ∈ M0,
there is some k ∈ ap ∩ aq such that fap(k) ̸= faq(k). Therefore k ≥ n and
fap(k) ∩ Km = faq(k) ∩ Km = ∅. Then fap(k) \ faq(k) or fap(k) \ faq(k) is
non empty. Call the non-empty one B. Define r ∈ P such that Ar = A ∪ B,
Hr = Hp ∪ Hq and pick mr large enough to satisfy Ar ⊆ Kmr . Then clearly
r ≤ p, q. □

By MAℵ1 , there is a set A ∈ C(X) and an uncountable H∗ ⊆ H such that
for all distinct a, b ∈ H∗, there is some n ∈ a∩ b such that either fa(n)∩Ap =
∅ and fb(n) ∩ Ap ̸= ∅ or fb(n) ∩ Ap = ∅ and fa(n) ∩ Ap ̸= ∅. Let x ⊆ ω with
F (x) = A. Then for all a ∈ H∗ we have e−1(x ∩ a)△(A ∩ F (a)) is compact.
So there are ka and ma such that e−1

a (x ∩ a \ ka) = (A ∪ F (a)) \ Kma and
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e−1
a (a \ ka) = F (a) \Kma . Then for all n ∈ a \ ka, if n ∈ x then fa(n) ⊆ A and

if n ̸∈ x then then fa(n)∩A = ∅. Pick distinct a, b ∈ H∗ satisfying ka = kb = k
and fa ↾ k = fb ↾ k. Then we have fa(n) ∩ A = ∅ if and only if fb(n) ∩ A = ∅
for all n ∈ a ∩ b. Yet this contradicts the assumptions on A. □

Now by OCA, there is a decomposition J =
⋃

n∈ω Jn where Jn is M1-
homogeneous for each n. As J is a P -ideal, there is some n ∈ ω such that
Jn is cofinal in (J ,⊆∗). Let Tn be such then define f =

⋃
{fa : a ∈ Jn}. Set

e(x) = n if and only if x ∈ f(n). Then since J is dense and Jn ⊆ J is cofinal,
a 7→ e−1(a) witnesses that φ is trivial.

Definition 4.1.5. An ideal I ⊆ P(ω) containing Fin is called Pℵ1-ideal if for
every family F ⊆ I of size ℵ1 there is some A ∈ I such that B ⊆∗ A for all
B ∈ F .

Remark 4.1.6. OCA implies that if I is a Pℵ1-ideal and {fa : a ∈ I} is a
family of functions such that fa : a → ω and fb ↾ a =∗ fa whenever a, b ∈ I
and a ⊆ b then there exists f : ω → ω such that f ↾ a = fa for all a ∈ I (see
[Far00, Chapter 2.2]).

Lemma 4.1.7 (Lemma 2.5 in [Vel93]). Assume b > ℵ1. If J is not a dense
P -ideal then there is an uncountable almost disjoint family A ⊆ P(ω) such
that A ∩ J = ∅.

Proof. Suppose first that J is not dense. Then there is some infinite A ∈ P(ω)
such that there is no B ∈ J satisfying B ⊆ A. In other words P(A) ∩ J = ∅.
Then we can find some uncountable almost disjoint A ⊆ P(A).

Now suppose that J is dense but not a P -ideal. Then there is a sequence
⟨An : n ∈ ω⟩ such that there is no A ∈ J satisfying An ⊆∗ A. We can suppose
without loss of generality that

⋃
n∈ω An = ω and An are pairwise disjoint. For

f ∈ ωω define Bf =
⋃
{An ∩ f(n) : n ∈ ω}.

Claim 4.1.8. There exists f ∈ ωω with φ is nontrivial on Bf .

Proof. Suppose for a contradiction that Bf ∈ J for all f ∈ ωω. Therefore
there exists ef : Bf → ω witnessing the triviality of φ on Bf . Define I as all
Bf which are almost disjoint from An for all n. Since b > ℵ1, we have I is
Pℵ1-subideal of J . Moreover from the Remark 4.1.6, there exists e : X → ω
such that e ↾ B =∗ eB for every B ∈ I. Note that we abuse the notation for
simplicity by writing e ↾ B. Here we mean clearly e−1 ↾ B.

Claim 4.1.9. There exists k ∈ ω such that e induces φ on ω \
⋃

i<k Ai.

Proof. It is sufficient to show that S = {n ∈ ω : e ↾ An does not induce φ ↾
An} is finite.

Suppose for a contradiction that S is infinite. Then for all n ∈ S, choose
an infinite Cn ⊆ An such that e−1(Cn) ∩ F (Cn) ∈ K(X). By shrinking Cn we
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can arrange that e−1(Cn)∩F (Cm) ∈ K(X) for every n,m ∈ S. Then find some
U ∈ C(X) such that F (Cn) ⊆∗ U and e−1(Cn) ∩ U ∈ K(X) for all n ∈ S. Let
F (C) =∗ U . Pick some in ∈ Cn ∩ C such that e−1({in}) ̸⊆∗ F (Cn). Observe
that B = {in : n ∈ S} is trivial. So e−1(B) =∗ F (B). Since B ⊆ C we have
F (B) ⊆∗ F (C). Yet e−1(B) ∩ F (C) ∈ K(X). Contradiction. □

Yet the Subclaim contradicts with the nontriviality of φ. This completes
the proof of the Claim. □

For any f ∈ ωω we can find some g ∈ ωω with f ≤∗ g and Bf \ Bg

is nontrivial by applying the same reasoning in the Claim for above An ∩
f(n). Since we assumed b > ω1, we can inductively construct an ≤∗-increasing
sequence ⟨fα : α ∈ ω1⟩ such that Bfα+1 \ Bfα are nontrivial. Therefore A =
{Bfα+1 \Bfα : α ∈ ω1} is the desired family.

4.2 Tree-like families

A tree-like family is a family of infinite subsets of ω whose elements corre-
spond to the infinite branches of the tree 2<ω. In this section we will see that
under MAℵ1 , any uncountable almost disjoint family contains an uncountable
subfamily which can be divided into two tree-like families.

Definition 4.2.1. An almost disjoint family A is tree-like if there is a tree T
on ω and an injection t : ω → 2<ω such that for each a ∈ A and each m,n ∈ a,
either t(m) ⊆ t(n) or t(n) ⊆ t(m).

Lemma 4.2.2 (Lemma 2.3 in [Vel93]). Assume MAℵ1. Then for every un-
countable almost disjoint family A ⊆ P(ω) admits an uncountable B ⊆ A and
partitions b = b0⊔ b1 for b ∈ B such that Bi = {bi : b ∈ B} is tree-like for i ∈ 2.

Proof. Following [Vel93], define the poset P such that p ∈ P if and only if
p = (e0p, e

1
p, np, Ap, Dp) where

1. np ∈ ω,

2. eip : np → 2<ω is into,

3. Ap ⊆ A is finite such that for any two different a, b ∈ Ap we have
a ∩ b ⊆ np,

4. Dp = {fa
p : a ∈ Ap} where fa

p : a ∩ np → 2 for every a ∈ A,

5. for every k, l < np, if there exists a ∈ Ap such that k, l ∈ a and fa
p (k) =

fa
p (l) = i for some i ∈ 2 then eip(k) ⊆ eip(l) or eip(l) ⊆ eip(k),

with the order p ≤ q if and only if nq ≤ np, eiq ⊆ eip for i ∈ 2, Aq ⊆ Ap and
fa
q ⊆ fa

p for every a ∈ Aq.
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Claim 4.2.3. P is ccc.

Proof. Let S ⊆ P be a subset of size ℵ1. By the pigeonhole principle we may
suppose that there exist n ∈ ω and ei : n → 2<ω such that np = n and eip = ei

for all p ∈ S and for all i ∈ 2. Moreover by the ∆-system lemma we may
assume that {Ap : p ∈ S} is a ∆-system with root A. Assume therefore that
for each a ∈ A, there is fa : a ∩ n → 2 such that fa

p = fa for all p ∈ S.
Pick two different elements p, q ∈ S. We will construct r ≤ p, q. Let

Ar = Ap ∪ Aq and pick nr ≥ n sufficiently large such that a ∩ b ⊆ nr for any
distinct a, b ∈ Ar. Suppose that a ∈ Ar. Define fa

r : a ∩ nr → 2 such that

fa
r (k) =


fa
p (k) if a ∈ Ap and k < n

0 if a ∈ Ap and n ≤ k ≤ nr

fa
q (k) if a ∈ Aq \ Ap and k < n

1 if a ∈ Aq \ Ap and n ≤ k ≤ nr

So Dr = {fa
r : a ∈ Ar}.

Lastly we define eir : nr → 2<ω as follows: eir ↾ n = ei. We have already that
(ei)′′(a∩n) is a chain in 2<ω moreover {a\n : a ∈ Ap} and {a\n : a ∈ Aq \Ap}
families of disjoint sets. So we can define e0r ↾ [n, nr[ to (e0r)

′′(a∩nr) be a chain
for every a ∈ Ap and e1r ↾ [n, nr[ to (e1r)

′′(a∩nr) be a chain for every a ∈ Aq \Ap

respecting the rules (2) and (5). From the construction it is clear that r ∈ P
and r ≤ p, q. □

Now assume without loss of generality that |A| = ℵ1 and define Da,n =
{p ∈ P : a ∈ Ap and np ≥ n} where a ∈ A and n ∈ ω.

Claim 4.2.4. Da,n ⊆ P is dense for all a ∈ A and n ∈ ω

Proof. Fix a ∈ A and n ∈ ω. Pick p ∈ P where p = (e0p, e
1
p, np, Ap, Dp). Then

we shall find q ∈ Da,n as follows: Let Aq = Ap ∪ {a}. Then let nq ≥ maxnp, n
be the smallest k ⊇ a∩b for all b ∈ Ap. Then we can find fx

q ⊇ fx
p and eiq ⊇ eip.

Observe that q ∈ Da,n and q ≤ p as desired. □

By the MAℵ1 , there is a {Da,n : a ∈ A, n ∈ ω}-generic filter G. Then for
all a ∈ A there is a total function fa : a → 2 =

⋃
{fa

p : p ∈ G, a ∈ Ap}. Define
a0 = (fa)−1(0) and a1 = (f 1)−1(1) as a = ao∪a1. Moreover ei =

⋃
{eip : p ∈ G}

witness that {ai : a ∈ A} is tree-like.

Lemma 4.2.5 (Lemma 3.5 of [FM12]). Assume OCA. Let A be an uncount-
able, tree-like, almost disjoint family of subsets of ω. Then J \A is countable.

Proof. Let t : ω → 2<ω be an injection witnessing that A is tree-like and X
be the set of all pairs ⟨a, b, ⟩ of subsets of ω such that there exists c ∈ A with
b ⊆ a ⊆ c. Define the coloring [X]2 = M0 ∪M1 by {⟨a, b⟩, ⟨ā, b̄⟩} ∈ M0 if and
only if
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1. t[a] ̸= t[ā],

2. a ∩ b̄ = ā ∩ b and

3. F (a) ∩ F (b̄) ̸= F (ā) ∩ F (b).

Then M0 is open in the product of the separable metric topology on X obtained
by identifying ⟨a, b⟩ with ⟨a, b, F (a), F (b)⟩.

Claim 4.2.6. There are no uncountable M0-homogeneous subsets of X.

Proof. Suppose for a contradiction that there is such Y ⊆ X. Define d =⋃
{b : ⟨a, b⟩ ∈ Y for some a}. Pick ⟨a, b, ⟩ ∈ Y . By the second condition

d ∩ a = b and so F (d) ∩ F (a) =∗ F (b). By pigeonhole principle we can find
an uncountable Z ⊆ Y and n ∈ ω such that (F (d) ∩ F (a))△F (b) ⊆ Kn and
F (b) \Kn ⊆ F (a) for all ⟨a, b⟩ ∈ Z. Then there are distinct ⟨a, b⟩ and ⟨ā, b̄⟩ in
Z such that F (a) ∩Kn = F (ā) ∩Kn and F (b) ∩Kn = F (b̄) ∩Kn. Therefore
we have F (a)∩F (b̄) = F (ā)∩F (b). This contradicts {⟨a, b⟩, ⟨ā, b̄⟩} ∈ M0. □

Therefore OCA implies that there is a countable decomposition X =
⋃

n∈ω Xn

where Xn are M1-homogeneous. Fix a countable dense subset Dn ⊆ Xn in the
sense of the product topology. For each ⟨a, b⟩ ∈ X pick σ(a) ∈ A such that
b ⊆ a ⊆ σ(a) and define B = {σ(a) : ⟨a, b⟩ ∈ Dn for some n ∈ ω}.

Now we show that φ is trivial on every c ∈ A \ B. Fix any such c and
decompose it into two disjoint sets c = c0 ∪ c1 such that foe every ϵ ∈ 2, n ∈ ω
and ⟨a, b⟩ ∈ Xn if a ⊆ cϵ then for every m ∈ ω there exists ⟨ā, b̄⟩ ∈ Dn such
that:

1. a ∩ b̄ = ā ∩ b,

2. a ∩m = ā ∩m and b ∩m = b̄ ∩m,

3. F (a) ∩Km = F (ā) ∩Km and F (b) ∩Km = F (b̄) ∩Km.

The decomposition is done as follows: First construct an increasing se-
quence ⟨ni : i ∈ ω⟩ by induction. Let n0 = 0. Suppose ⟨ni : i ≤ k⟩ is defined.
Then choose nk+1 sufficiently large such that for every x, y ⊆ nk and every
i ≤ k if there exists ⟨a, b⟩ ∈ Xi such that a ∩ nk = x, b ∩ nk = y, F (x) ⊆ Knk

and F (y) ⊆ Knk
then there exists ⟨a, b⟩ ∈ Di satisfying the same properties

and a∩c ⊆ nk+1. Since a is almost disjoint from c we can find such b satisfying
⟨a, b⟩ ∈ Di.

Now define c0 =
⋃
{c∩ [nk, nk+1) : k = 0 mod 2} and c1 = c\c0. Moreover

define the sequence of functions Fn : P(c0) → C(X) by Fn(b) =
⋃
{F (c0) ∩

F (b̄) : ⟨ā, b̄⟩ ∈ Dn and ā ∩ b = c0 ∩ b̄}.
By definition Fn are Borel functions. Let ⟨c0, b⟩ ∈ Xn. Then Fn(b) =

∗ F (b).
By the Theorem 3.2.1, φ is trivial on c0. By defining an analogue sequence of
functions we show that φ is trivial on c1. Therefore we have φ is trivial on
c.
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4.3 Embedding Theorem

In this section we will show the main result of this report: every embedding
of P(ω) in C(X)/K(X) is trivial under OCA + MAℵ1 . We will prove this by
showing that J is a dense P -ideal. By virtue of the lemmas of the previous
sections we will prove that J is a P -ideal. We will quote some consequences of
the independent works of Jalali-Naini and Talagrand ([JN76] , [Tal80]) which
characterise comeager subsets of certain compact spaces and as a result show
that J is dense. Recall that Y ⊆ X is meager, if Y is a countable union of
nowhere-dense sets and comeager if X \ Y is meager.

Following theorems are from the paper [MV21]. These are due to Jalali-
Naini and Talagrand independently. Their proofs can be found in [Far00,
Chapter 3.10].

Theorem 4.3.1 (Theorem 2.1 of [MV21]). Let Yn be finite sets for n ∈ ω. A
set G ⊆

∏
Yn is comeager if and only if there is a partition ⟨Ei : i ∈ ω⟩ of ω

into finite intervals and a sequence ti ∈
∏

n∈Ei
Yn such that y ∈ G whenever

{i : y ↾ (
∏

n∈Ei
) = ti} is infinite. □

A set H ⊆ P(ω) is called hereditary if whenever b ∈ H and a ⊆ b, we have
a ∈ H. Any ideal of P(ω) is hereditary by definition. We have the following
theorem as a corollary of Theorem 4.3.1.

Theorem 4.3.2 (Proposition 2.4 of [MV21]). Let I ⊆ P(ω) be an ideal con-
taining Fin. Then the following are equivalent:

1. I has the Baire property;

2. I is meager;

3. there is a partition ⟨Ei : i ∈ ω⟩ of ω into finite intervals such that for
any infinite set L,

⋃
n∈L En is not in I. □

Corollary 4.3.3 (Corollary 3.10.2 of [Far00]). A subset I ⊆ P(ω) is comeager
if and only if there is a sequence 0 = n0 < n1 < · · · of natural numbers
and si ⊆ [ni, ni+1) such that I includes the set {a ⊆ ω : a ∩ [ni, ni+1) =
si for infinitely many i}. □

Theorem 4.3.4 (Theorem 3.1 of [FM12]). Assume OCA + MAℵ1. Suppose
that

φ : P(ω)/Fin → C(X)/K(X)

is an injective homomorphism. Then φ is trivial.

Proof. Strategy of the proof is to show that J is a dense P -ideal and conclude
by the Lemma 4.1.2. Suppose for a contradiction that J is not a dense P -ideal.
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We will consider following cases independently: J is not a P -ideal; J is not
dense.

We shall begin by the first case “J is not a P -ideal”. By the Lemma 4.1.7
there is an uncountable almost disjoint family A ⊆ P(ω) such that A∩J = ∅.
Therefore by the Lemma 4.2.2 there exists an uncountable subset B ⊆ A and
a coloring b = b0 ∪ b1 for all b ∈ B such that Bi = {bi : b ∈ B} are both
tree-like for i ∈ 2. So by the Lemma 4.2.5, all but countably many of the
elements of Bi belong to J . Call it B̃i. Then by the pigeonhole principle there
in uncountably many b ∈ B such that bi ∈ B̃i for both colors i ∈ 2. Since J is
an ideal, b0, b1 ∈ J implies b = b0 ∪ b1 ∈ J . Thus B ∩ J ̸= ∅. Contradiction.

From the construction in Lemma 3.2.2, we know that there exists a se-
quence ⟨ni : i ∈ ω⟩ of integers and a sequence of subsets ⟨si ⊆ [ni, ni+1) : i ∈ ω⟩
such that {a ⊆ ω : a ∩ [ni, ni+1) = si for infinitely many i} belongs to J .
Therefore J is comeagre so it is dense.
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Appendix A

Forcing Axioms and
Combinatorics

The main results of this report depend on the set theoretic ambient. In other
words, some phenomena in the scope of this work depend on the models of the
set theory (Zermelo-Fraenkel set theory with Axiom of Choice, shortly ZFC).
Forcing Axioms are higher versions of the Baire Category Theorem, ensuring
the existence of as many generics as possible, and therefore providing models
in which the universe is as complete as possible. We will state one here which
will serve throughout this appendix: Proper Forcing Axiom (PFA).

Definition A.0.1. A forcing notion P is called proper if for every uncountable
cardinal λ, forcing with P preserves stationary subsets of [λ]ω.

Definition A.0.2. PFA is the following statement: If P is a proper forcing
notion and D is a family of ℵ1 dense subsets of P then there is a D-generic
filter G on P.

PFA was introduced by Baumgartner in [KV84, Chapter 21] although it
was implicitly present in earlier work of Shelah [She82]. Its consistency was
proved in [She82]. Properness is in fact a weakening of the ccc. Therefore in
some sense PFA is a generalisation of Martin’s Axiom. Yet unlike Martin’s
Axiom, consistency of PFA requires large cardinals. One may see [She16] or
[She82] for a detailed study of PFA, its roots and consequences.

In this appendix we review some required notions and related results. For
a general treatise of set theory see [Kun83], [Kun11] or [Jec03]. Our set theo-
retical notation follows these three books.

A.1 Martin’s Axiom

We review some notions related to forcing and give the statement of Martin’s
Axiom. One may refer to [Fre08] for an extensive study of consequences of
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Martin’s Axiom.

Definition A.1.1. A forcing poset is a triple (P,≤, 1) such that ≤ is a preorder
with largest element 1.

Definition A.1.2. Let P be a forcing poset, p, q ∈ P and A ⊆ P. Then

1. p, q are comparable if p ≤ q or q ≤ p;

2. p, q are compatible (denoted by p ∥ q) if there is some r ∈ P such that
r ≤ p, q;

3. p, q are incompatible (denoted by p⊥q) if they are not compatible,

4. A is a chain if elements of A are pairwise comparable;

5. A is an antichain if elements of A are pairwise incompatible;

6. A is dense in P if for any x ∈ P there exists y ∈ A such that y ≤ x;

7. P has the countable chain condition (ccc) if every antichain is countable.

Definition A.1.3. G ⊆ P is a filter if

1. 1 ∈ G,

2. for any x, y ∈ G, there exists r ∈ G such that r ≤ x, y and

3. for any x, y ∈ P, if x ∈ G and x ≤ y then y ∈ G.

Definition A.1.4. MAκ is the following statement: For every ccc poset P,
whenever D is a family of dense subsets of P with |D| ≤ κ, there exists a filter
G on P such that G ∩D ̸= ∅ for all D ∈ D.

Proofs of the following theorems can be found in [Kun83, Chapters II and
VIII.6] or alternatively in [Kun11, Chapters III and V.6]. Relative consistency
results can be achieved by iterative forcing (as it is done in Kunen) as well as
using relative the consistency of PFA.

Theorem A.1.5. MAκ is relatively consistent with ZFC. □

Theorem A.1.6. MAκ implies that the continuum is strictly bigger than κ. □

Therefore Martin’s axiom is independent from ZFC and CH is inconsistent
with it.
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A.2 Open Coloring Axiom

Open Coloring Axiom (OCA) is a Ramsey type axiom introduced by Stevo
Todorčević in [Tod89]. In the same monograph, it is proven that OCA follows
from PFA. In particular this result implies that MAℵ1 + OCA is relatively
consistent. Now fix a separable metric space X.

Notation A.2.1. Let S, S ′ be two sets. Then [S]S
′ stands for the set {s ⊆ S :

|s| = |S ′|}.

Definition A.2.2. A partition (or interchangeably a coloring) [X]2 = M0∪M1

is open if the set M̃0 = {(a, b), (b, a) ∈ X × X : {a, b} ∈ M0} is open in the
product topology X ×X \ diagonal.

Definition A.2.3. OCA is the following statement: Let [X]2 = M0 ∪M1 be
an open coloring. Then either X has an uncountable M0-homogeneous subset
or it can be covered by a countable family of M1-homogeneous subsets.

Theorem A.2.4 (Theorem 8.0 in [Tod89]). PFA implies OCA. □

Note that OCA can also be proven in ZFC i.e. without assuming existence
of large cardinals (see [Vel92]).

A.3 Combinatorics

In this section we will discuss some infinitary combinatorics. For more combi-
natorial results related to the subject see [Far19].

Let us begin our discussion with stating the most basic combinatorial
method, the so-called pigeonhole principle. Let κ < λ be two infinite car-
dinals. If λ =

⋃
α∈κ Sα then, by the Axiom of Choice, |Sα| = λ at least for one

α ∈ κ.

Definition A.3.1. A family F ⊆ P(ω) is called almost disjoint if for any
distinct a, b ∈ F we have a ∩ b ∈ Fin.

For a, b ∈ P(ω), we say b almost includes a if a \ b ∈ Fin. This is denoted
by a ⊆∗ b. Similarly we say b is almost equal to a if a△b ∈ Fin. This is denoted
by a =∗ b. It is easy to observe that (P(ω),⊆∗) is a quasi order.

An order (X,<) is called σ-directed if for every countable A ⊆ X there
exists a ∈ X such that a < x for all a ∈ A.

Proposition A.3.2. Let ⟨bn : n ∈ ω⟩ be a sequence of subsets of ω. Let A
be the set of all subsets of ω which are almost disjoint from each bn. Then
(A,⊆∗) is σ-directed.
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Proof. Take without loss of generality an increasing sequence ⟨cn : n ∈ ω⟩ of A.
If C =

⋃
n∈ω cn ∈ A then there is nothing to do. Otherwise, C ∩ bnj

is infinite
for at most countably many nj. The finite case is trivial since C \

⋃
i bnj

is
clearly in A. Suppose that there are infinitely many nj. Now by eliminating the
elements from ci which are also in bnj

diagonally we get C ′ =
⋃

i∈ω ci \
⋃

j≤i bnj

which is clearly in A and cn ⊆∗ C ′ for all n ∈ ω.

Proposition A.3.3 (∆-System lemma). Let F = {Aα : α ∈ ω1} be an un-
countable family of finite sets. Then there is an uncountable W ⊆ ω1 and a
finite set R such that Aα ∩ Aβ = R for any two distinct α, β ∈ W .

Proof. We start by an elementary observation:

Claim A.3.4. We may assume without loss of generality that all Aα have the
same size.

Proof. Considering the partition F =
⋃

k∈ω{Aα : |Aα| = k}, we see immedi-
ately that there is at least one n ∈ ω such that {Aα : |Aα| = n} is uncountable
by the pigeonhole principle. □

We will argue by induction on the size of elements of F . For n = 1, we
have clearly W = ω1 and R = ∅. Induction hypothesis: for n = k, there exist
desired W ⊆ ω1 and R. Let us examine the case n = k + 1.

Suppose there exists an x such that x ∈ Aα for uncountably many α. Then
consider the family of Aα \{x}, whose elements are of size k. By the induction
hypothesis, there exist an uncountable W ′ ⊆ ω1 and a finite R′ such that
(Aα \ {x}) ∩ (Aβ \ {x}) = R′ for all α ̸= β ∈ W ′. Therefore for W = W ′ and
R = R′ ∪ {x} we have Aα ∩ Aβ = R for all α ̸= β ∈ W .

Now suppose that for all x we have x ∈ Aα for countably many α. Then
we can construct a disjoint uncountable subfamily {Bα : α ∈ ω1} ⊆ F by
induction on α. Let B0 = A0. Suppose we have constructed Bβ for all β < α.
As α is countable, we made at most ℵn

0 = ℵ0 choice of elements for these
Bβ. So there is some γ ∈ ω1 such that Aγ ∩ Bβ = ∅ for all β < α. Choose
Bα = Aγ.

Definition A.3.5. Let P be a poset. The bounding number of P is the minimal
cardinal of an unbounded subset of P. It is denoted by bP. In particular b
denotes the bounding number of (ωω,≤∗).

Proposition A.3.6. MAκ implies that b > κ.

Proof. Suppose for a contradiction that there exists some unbounded family
F of cardinal κ. Define the forcing notion P as follows: p ∈ P if and only if
p = (Fp, Ap, fp) where

• Fp ∈ [F ]<ω,
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• Ap ∈ Fin and

• fp : Ap → ω dominating all g ∈ Fp on Ap

equipped with the order p ≤ q if and only if

• Fq ⊆ Fp,

• Aq ⊆ Ap and

• fq ≤ fp.

Claim A.3.7. P is ccc.

Proof. Indeed P is more than ccc : take any two distinct p, q ∈ P. Then we
can easily find r ≤ p, q where Fr = Fp∪Fq, Ar = Ap∪Aq and fr : Ap∪Aq → ω
dominating Fr on Ap ∪ Aq. □

Now define Dn = {p : n ∈ Ap} where n ∈ ω and Ef = {p : f ∈ Fp} where
f ∈ F . Observe that Dn and Ef are dense in P. Then MAκ implies that there
is a {Dn, Ef : n ∈ ω and f ∈ F}-generic filter G. Therefore f =

⋃
{fp : p ∈ G}

is a total function dominating F . This contradicts the hypothesis.
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Appendix B

Stone Spaces and Corona Spaces

One of the main objects of this report is the Stone-Čech compactification. It
is defined by a universal property for a certain category of topological spaces.
In this appendix we will first review the construction of the Stone-Čech com-
pactification, Stone Duality and their relation for the zero dimensional locally
compact spaces. Then we will study Parovičenko’s characterization of ω∗.

B.1 Stone-Čech Compactification

The Stone-Čech compactification β is a functor which associates a topological
space X to a compact Hausdorff space βX such that any continuous map
from X to a compact Hausdorff space factors through βX. Intuitively this is
the "largest" possible compactification satisfying this universal property. In
this section we will construct the Stone-Čech compactification of topological
spaces. We will omit most of the proofs which can be found in the first chapter
of [Wal74] or in the second chapter of [CN74].

Definition B.1.1. Let X be a topological space. The pair (K, e) is a compact-
ification of X if K is a compact space and e : X → K is a dense embedding.

Definition B.1.2. Let X be a topological space. A Stone-Čech compactifica-
tion of X is (βX, e) such that:

• (βX, e) is a compactification of X where βX is Hausdorff,

• the universal property below is satisfied : for any compact Hausdorff
space K and for any continuous function f : X → K, there exists a
unique continuous function βf : βX → K such that the diagram

βX

X K

βfe

f
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commutes.

Remark B.1.3. The Stone-Čech compactification of a completely regular
space is unique up to homeomorphism.

Notation B.1.4. Let X be a topological space. We let C(X) denote the ring
of continuous functions f : X → C and C∗(X) denote the subring of bounded
functions.

Definition B.1.5. A zero-set of X is a set equal to f−1({0}) for some f ∈
C(X). We will denote the family of zero-sets of X by Z(X).

The filters (respectively ultrafilters) on Z(X) are called the z-filters (re-
spectively z-ultrafilters) in the literature. There are several equivalent con-
structions of the Stone-Čech compactification. We will give the one which
uses z-ultrafilters.

Note that the definition of the Stone-Čech compactification could equiv-
alently be made in terms of complex valued continuous functions as follows:
(βX, e) is a compactification of X where e is a C∗ embedding (every bounded
function on X extends continuously to βX). Tychonoff’s characterisation of
completely regular topological spaces

X is completely regular if and only if there is an embedding of X
in a product of copies of the closed unit interval

strongly suggests that this class is the appropriate class to study through
the compactifications when we construct the Stone-Čech compactification as
[0, 1]C(X) (see pg.8 in [Wal74]). We can reformulate Tychonoff’s characteri-
sation to build a bridge between the construction mentioned above and the
z-ultrafilter one, as follows:

X is completely regular if and only if Z(X) is a basis for the closed
sets of X.

Theorem B.1.6 (Čech, Stone). Every completely regular space has a Stone-
Čech compactification. □

The construction by z-ultrafilters is as follows: βX is the set of all z-
ultrafilters on X with the Stone topology determined by the basis

B = {{u ∈ βX : A ̸∈ u} : A ∈ Z(X)}.

And the canonical embedding e : X → βX is given by x → ux where ux is the
principal ultrafilter generated by x. One may check by hand (see pg. 24 in
[CN74]) that this construction works.
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By abuse of notation e(X) ⊆ βX is traditionally identified with X. This
is the "trivial" part of the compactification. The rest βX \ X is called the
Stone-Čech remainder and denoted X∗. A priori we do not know whether X∗

is compact or not. The following result, whose proof can be found in [CN74]
(Lemma 2.9), gives a definitive answer to this.

Theorem B.1.7. X∗ is compact if and only if X is locally compact. □

B.2 Stone Duality

We assume that the reader is familiar with the definition and basic facts about
Boolean algebras. These can be found in the extensive work [Hal74]. In this
section we will set up the Stone Duality between Boolean algebras and Boolean
spaces (zero-dimensional compact Hausdorff spaces), and relate this to the
Stone-Čech compactification of totally disconnected zero dimensional spaces.
We will state the theorems without proofs which can be found in the second
chapter of [Wal74] or [CN74].

Let X be a topological space. Then clopen subsets of X form a Boolean
algebra denoted C(X).Therefore the more connected the space X is the smaller
C(X).

Generalised Cantor space 2I (with the product topology) are the prototypes
of Boolean spaces. Also note that any product of Boolean spaces is Boolean.

Definition B.2.1. Let B be a Boolean algebra. The Stone Space or the dual
space of B is the set of all ultrafilters S(B) of B with the topology generated
by the basis

{s(a) : a ∈ B}
where s(a) = {u ∈ S(B) : a ∈ u}.

The map

s : B → P(S(B))
a 7→ s(a)

is called the Stone map

Theorem B.2.2 (Stone Representation Theorem (algebraic)). Let B be a
Boolean algebra. Then S(B) is Boolean and s : B → C(S(B)) is an iso-
morphism. □

Let X be a Boolean space. Then C(X) is the dual algebra of X. Define
t(x) = {a ∈ C(X) : x ∈ a}. Clearly

t : X → S(C(X))

x 7→ t(x)

is well defined.
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Theorem B.2.3 (Stone Representation Theorem (topological)). Let X be a
Boolean space. Then t is a homeomorphism. □

Therefore the bidual of a Boolean algebra/space is itself.

Theorem B.2.4. Let X be a Boolean space and A be a Boolean algebra.
Then {x ∈ 2X : continuous} is a subalgebra of 2X isomorphic to C(X) and
{x ∈ 2A : homomorphism} is a closed subspace of 2A homeomorphic to S(A).
□

Now we will study the homomorphisms and continuous mappings and see
that Stone Duality is indeed a contravariant functor between the categories of
Boolean algebras and of Boolean Spaces.

Let f : A → B be a Boolean algebra homomorphism. We define the dual
of f by

fd : S(B) → S(A).

u 7→ f−1(u)

fd is well defined since preimages of ultrafilters under morphisms are ultra-
filters. And similarly we define the dual of a continuous map φ : X → Y of
Boolean spaces by

φd : C(Y ) → C(X).

a 7→ f−1(a)

Theorem B.2.5 (Stone Representation Theorem (morphisms)). Let f : A →
B be a Boolean algebra homomorphism and φ : X → Y be a continuous map
of Boolean spaces. Then

1. fd is continuous,

2. φd is a homomorphism

3. f is one-to one if and only if fd is onto,

4. φ is one-to one if and only if φd is onto and

5. diagrams below commute.

A C(S(A)) X S(C(X))

B C(S(B)) Y S(C(Y ))

sA

f fdd

tX

φ φdd

sB tY

□
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This observation with the Stone Representation Theorem leads to the fol-
lowing important results for zero-dimensional totally disconnected spaces:

Theorem B.2.6. Let X be a totally disconnected zero-dimensional space.
Then βt : βX → S(C(X)) is a homeomorphism. □

Theorem B.2.7. X is strongly zero-dimensional if and only if βX is zero-
dimensional. □

Theorem B.2.8. Let X be a locally compact, zero-dimensional space. Set
F(X) = {A ∈ C(X) : A is cocompact} and Â = clβXA ∩X∗ for all A ∈ C(X).
Then A 7→ Â is a Boolean algebra homomorphism from C(X) onto C(X∗) with
associated filter F(X), and C(X∗) is isomorphic to C(X)/F(X). □

As a conclusion of this section observe that the dual algebra of βω is P(ω),
ω∗ is ω/Fin, βX is C(X) and X∗ is C(X)/K(X) for zero-dimensional, locally
compact X. Moreover any continuous map φ : X∗ → Y ∗ corresponds to
φd : C(Y )/K(Y ) → C(X)/K(X).

B.3 Parovičenko’s characterization of ω∗

“The space βω is a monster with three heads. If one works in a
model in which the Continuum Hypothesis holds, then one will see
only the first head. This head is smiling, friendly, and makes you
feel comfortable working with βω.”

Jan van Mill

In this section we will see how X∗ behaves under CH. Parovičenko showed
in his 1963 paper that, for any X from a relevant class1 CH implies that X∗ is
homeomorphic to ω∗. This section is based on [KV84, Chapter 11] and [Wal74,
Chapter 3].

Let B be a Boolean algebra. We say that B satisfies condition Hω if for all
F ∈ [B\{1}]≤ω and G ∈ [B\{0}]≤ω with F < G (i.e for any finite F ′ ⊆ F and
G′ ⊆ G we have ∨F ′,∧G′) there is an element x ∈ B such that F < {x} < G.

From now on X refers to a zero-dimensional, locally compact, noncompact
Polish space. For the proof of the following lemma we will adopt an operator
algebras point of view rather than a topological one. Recall that such X is
σ compact as X =

⋃
nKn. Define X0 = K0 and Kn = Kn \ Kn−1. We will

identify C(X) with
∏

n C(Xn) and K(X) with
⊕

n C(Xn).

Lemma B.3.1. C(X)/K(X) satisfies Hω.
1So-called Parovičenko spaces.
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Sketch of the proof. Let F,G ⊆ C(X)/K(X) \ {0, 1} be two countable families
satisfying F < G. Enumerate F and G as {fn : n ∈ ω} and {gn : n ∈ ω}
respectively. Assume without loss of generality that f0 < f1 < · · · and g0 >
g1 > · · · . Take representatives Fn, Gn ∈ C(X) of fn, gn. For all j ∈ ω there is a
k ∈ ω such that for all l ≥ k we can find a hl satisfying πl(fi) ⊆ hl ⊆ πl(gi) for
all n ≤ j where πl are the projections. We find the desired h with F < {h} < G
by diagonalising hl.

The following corollary is therefore a trivial special case.

Corollary B.3.2. P(ω)/Fin satisfies Hω.

Definition B.3.3. Let B be a Boolean algebra. We say that B satisfies con-
dition Rω if for any F ∈ [B \ {1}]≤ω, G ∈ [B \ {0}]≤ω and H ∈ [B]≤ω such
that

1. F < G,

2. ∀F ′ ∈ [F ]<ω ∀G′ ∈ [G]<ω ∀h ∈ H : h ̸≤ F ′ and ∧G′ ̸≤ h,

3. F < {x} < G,

4. ∀h ∈ H : h ̸≤ x and x ̸≤ h.

The following lemma will be required for the proof of the main theorem.

Lemma B.3.4. If a Boolean algebra B satisfies condition Hω, then it satisfies
condition Rω.

Proof. Let F,G and H be as in Definition B.3.3 (1) and (2). Enumerate
F = {fn : n ∈ ω}, G = {gn : n ∈ ω} and H = {hn : n ∈ ω}. For each
h ∈ H and finite F ′ ⊆ F we have that (∨F ′)c ∧ h ̸= 0, therefore there exists,
by applying the condition Hω for all n ∈ ω, an element dn ∈ B \ {0} such that
dn < hn and f ∧ dn = 0 for all f ∈ F . Similarly we can find en ∈ B \ {0} such
that {en} < G and en ∧ hn = 0.

We can indeed assure that en ∧ dm = 0 for all n,m ∈ ω. Now define for all
n ∈ ω, f̃n = fn ∨ en and g̃n = gn ∧ dcn.

Observe that for any n,m ∈ ω we have
∨

0≤i≤n f̃i ≤
∧

0≤j≤n g̃j. By Hω we
can find x ∈ B such that for all n,m ∈ ω∨

0≤i≤n

f̃i ≤ x ≤
∧

0≤j≤n

g̃j.

Now we can state and prove the main result of this section. The sketch of
the proof is due to van Mill.
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Theorem B.3.5 (Parovičenko’s Theorem). Assume CH. If B is a Boolean
algebra of cardinality at most c satisfying Hω then B is isomorphic to P(ω)/Fin.

Proof. Let B and C be two Boolean algebras satisfying Hω such that |B|, |C| ≤
c. By CH enumerate B = {bα : α ∈ ω1} and C = {cα : α ∈ ω1}. Without loss
of generality assume that b0 = 0 and c0 = 0. We will reason by "back and
forth". By transfinite induction on α we will construct subalgebras Bα ⊆ B ,
Cα ⊆ C and isomorphisms σα : Bα → Cα such that

1. bα ∈ Bα and cα ∈ Cα,

2. if β < α then Bβ ⊆ Bα, Cβ ⊆ Cα and σ ↾ Bβ = σβ.

Let B0 = C0 = {0, 1} and σ0 be defined canonically. Suppose that Bβ, Cβ
and σβ are defined for all β < α < ω1 satisfying (1) and (2). If bα ∈

⋃
β∈α Bβ

and cα ∈
⋃

β∈α Cβ then define Bα =
⋃

β∈α Bβ , Cα =
⋃

β∈α Cβ and σα ∈
⋃

β∈α σβ.
Now suppose without loss of generality bα ̸∈

⋃
β∈α Bβ = F . Let σ =⋃

β∈α σβ. Put F0 = {f ∈ F : f < bα}, F1 = {f ∈ F : f > bα} and
F2 = F \ (F0 ∪ F1).

By Lemma B.3.4 there is an element c ∈ C such that σ(F0) < {c} < σ(F1)
and for all c′ ∈ σ(F2) we have c′ ̸≤ c and c ̸≤ c′. If we put σ(bα) = c and
σ(bcα) = cc then σ can be extended to an isomorphism between the generated
algebras σ̃ : ⟨⟨F ∪ {bα}⟩⟩ → ⟨⟨σ(F) ∪ {c}⟩⟩. If cα ̸∈ ⟨⟨σ(F) ∪ {c}⟩⟩ we do the
same thing in the converse direction.

34



Bibliography

[CN74] W. W. Comfort and S. Negrepontis. The theory of ultrafilters, volume
211 of Grundlehren Math. Wiss. Springer, Cham, 1974.

[Far00] Ilijas Farah. Analytic quotients. Theory of liftings for quotients over an-
alytic ideals on the integers, volume 702 of Mem. Am. Math. Soc. Provi-
dence, RI: American Mathematical Society (AMS), 2000.

[Far19] Ilijas Farah. Combinatorial set theory of C∗-algebras. Springer Monogr.
Math. Cham: Springer, 2019.

[FGVV22] Ilijas Farah, Saeed Ghasemi, Andrea Vaccaro, and Alessandro Vignati.
Corona rigidity, 2022.

[FM12] Ilijas Farah and Paul McKenney. Homeomorphisms of cech-stone remain-
ders: the zero-dimensional case. Proceedings of the American Mathemat-
ical Society, 146, 11 2012.

[Fre08] D. H. Fremlin. Consequences of Martin’s axiom, volume 84 of Camb.
Tracts Math. Cambridge: Cambridge University Press, paperback reprint
of the 1984 edition edition, 2008.

[Hal74] Paul R. Halmos. Lectures on Boolean algebras. Reprint. New York -
Heidelberg - Berlin: Springer-Verlag. 147 p. (1974)., 1974.

[Jec03] Thomas Jech. Set theory. Springer Monogr. Math. Berlin: Springer, the
third millennium edition, revised and expanded edition, 2003.

[JN76] S.A Jalali-Naini. The Monotone Subsets of Cantor Space, Filters and
Descriptive Set Theory. Oxford, 1976.

[Kec95] Alexander S. Kechris. Classical descriptive set theory, volume 156 of
Grad. Texts Math. Berlin: Springer-Verlag, 1995.

[Kun83] Kenneth Kunen. Set theory. An introduction to independence proofs. 2nd
print, volume 102 of Stud. Logic Found. Math. Elsevier, Amsterdam,
1983.

[Kun11] Kenneth Kunen. Set theory., volume 34 of Stud. Log. (Lond.). London:
College Publications, 2011.

35



[KV84] Kenneth Kunen and Jerry E. Vaughan. Handbook of set-theoretic topol-
ogy. Amsterdam-New York-Oxford: North-Holland. VII, 1273 p. $ 98.00;
Dfl. 275.00 (1984)., 1984.

[MS70] D. A. Martin and R. M. Solovay. Internal Cohen extensions. Ann. Math.
Logic, 2:143–178, 1970.

[MV21] Paul McKenney and Alessandro Vignati. Forcing axioms and coronas of
C∗-algebras. J. Math. Log., 21(2):73, 2021. Id/No 2150006.

[Par63] I. I. Parovichenko. A universal bicompact of weight S. Sov. Math., Dokl.,
4:592–595, 1963.

[Rud56] Walter Rudin. Homogeneity problems in the theory of Cech compactifi-
cations. Duke Math. J., 23:409–419, 1956.

[She82] Saharon Shelah. Proper forcing, volume 940 of Lect. Notes Math.
Springer, Cham, 1982.

[She16] Saharon Shelah. Proper and improper forcing. Perspect. Log. Cambridge:
Cambridge University Press; Urbana, IL: Association for Symbolic Logic
(ASL), 2nd edition. Reprint of the 1998 original published by Springer
edition, 2016.

[SS88] Saharon Shelah and Juris Steprāns. PFA implies all automorphisms are
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