
GRAPH QUERIES IN THE EMBEDDED FINITE MODEL THEORY

Deniz YILMAZ
Leonid LIBKIN, Cristina SIRANGELO

Université Paris Cité IRIF

GRAPH QUERIES IN THE EMBEDDED FINITE MODEL THEORY

Deniz YILMAZ
Leonid LIBKIN, Cristina SIRANGELO

Université Paris Cité IRIF

Description of the Problem

At present, graph databases have a unifying language: GQL. In April 2024, it became an
ISO standard [5]. One may refer to the survey paper [3] as an introduction to GQL. Our overall
goal is to study fragments of GQL in order to achieve a theoretical understanding of their
expressive power, complexity, and connections with classical logics that we understand well.

Embedded Finite Model Theory (EFMT) involves studying how finite models interact with
infinite structures and understanding the computational and logical properties that arise from
these interactions. EFMT provides an appropriate setting to study the Constraint Databases.
Collapse results (Benedikt , Libkin [2] and independently active-generic collapse Otto and Van
den Bussche [8]) greatly improved our understanding of the expressive power of the first order
queries.

There are arguably two big categories for graph query languages:
1. Taking graphs as relational data and using classical relational queries, for example SQL,

(Data);

2. Querying navigational patterns between nodes, for example regular path queries RPQ
(Topology).

One may find a detailed study of query languages combining “Data” and “Topology” in [7].
These logics can be studied in the framework of EFMT. This setting makes the combination of
“Data” and “Topology” possible.

For starters, we fix our data model as edge labelled graphs in the EFMT setting and define
logics combining topology and data. Typically these would be expected to capture:

• “there exists a path πt
s from s to t with its label λ(πt

s) ∈ e for some regular expression e”
where s, t are two nodes;

• “data on the nodes of the path πt
s satisfy some logical conditions ”.

Defined logics are studied to understand their expressive power and complexity. Already
existing "collapse results" are not sufficient for these more expressive logics. Therefore we are
seeking analogous versions of the collapse results.

Embedded Finite Model Theory

Here we present a summary of the EFMT setting. For a detailed treatise, see [6, ch. 5].

Definition 1. Fix a vocabulary τ , let M be a τ -structure and Σ = {R0, · · · , Rn} be a finite
relational vocabulary where arity of Ri is ri. An embedded finite Σ-structure into M is

A = ⟨A,RA
0 , · · · , RA

n ⟩

where RA
i ⊆ M ri (M stands for the domain of M) is a finite subset for all i and A =

⋃
i≤n{a ∈

M : a occurs in Ri}.

A is called the active domain and denoted adomA. We will denote the (τ,Σ)-structures as
⟨M,A⟩.

Remark 2. One can also define (τ,Σ)-structures equivalently by specifying an embedding: Let
A be a finite Σ-structure and δ : A → M be an injection. Then ⟨M,A, δ⟩ defines a (τ,Σ)-
structure.

Syntax of the first order (τ,Σ)-formulae, denote FO(τ,Σ), is FO(τ ∪ Σ) formulas with active
domain quantifiers ∃adom and ∀adom .
Semantics of FO(τ,Σ) is defined in the usual way except the active domain quantification.
The latter is defined as follows:

⟨M,A⟩ |= ∃adom xφ(x, ā) if and only if ⟨M,A⟩ |= φ(b, ā) for some b ∈ A.

Collapse Results

A collapse result typically shows that a logic is equivalent in terms of expressive power to a simpler fragment of
it. Natural-active collapse amounts to elimination of unbounded quantifiers. Generic collapses state order-generic
queries can be expressed only using order relation from the underlying structure.
A summary of collapse results ([6, ch. 5.6.7]):

FOact(M,Σ) FO(M,Σ)

FOact(<,Σ) FO(<,Σ)

M is o-minimal and has quantifier elimination

natural-active collapse

M is ordered

active-generic collapse

M has finite V C-dimension

natural-generic collapse

Remark 3. Note that the collapse results hold if the underlying structure M satisfies specific conditions. In particular
Th(M) being decidable does not guarantee admitting collapse. Yet this is far from being discouraging since the
following structures admit collapse: Linear Arithmetic ⟨N, 0, 1,+,≤⟩, Real Ordered Group ⟨R, 0, 1,+,≤⟩ and Real
Ordered Field ⟨R, 0, 1,+, ·,≤⟩.

An Example of a Graph Database as an EFM

Suppose we have a map of (some sector of) the world with airports marked on it and a list of all flights. We pick two
airports, say s and t. Our query is the following:

Can we find a point p on the map such that there is a flight (direct or not) from s to t such that each
airport used is at distance less than r for some fixed r?

One can model this problem by using 2-dimensional embedded data graph on the real ordered field ⟨R, 0, 1,+, ·,≤⟩
by the following assignments:

• V : set of airports with s, t ∈ V ;

• Ea(v, w): a direct flight from v to w of a-airline;

• δ0(v) is the x-axis coordinate and δ1(v) is the y-axis coordinate of v.

Question. From the statement of the query above finding such p seems to require an unbounded quantification
over R. Is it necessarily the case?
Consider the map in the Figure I. Suppose that there is a way to travel from s to t following the path

πt
s : s → v1 → v2 → v3 → t.

One can eliminate the unbounded quantification by a simple geometric analysis: Figure II.

Figure I.

s t

v1
v2

v3

Figure II.

s t

v1
v2

v3

s t

v1
v2

v3

p

Data Model and Query Languages

Definition 4. An n-dimensional embedded graph database into M is ⟨G,M, δi : i ∈ n⟩
where:

• G is a Σ-labelled graph;

• δi : V → M is a mapping such that ∆ : V → Mn by x 7→ (δi(x) : i ∈ n) is an injection.

For querying graphs FO is not adequate. For example connectivity is not FO-definable.
Therefore we need to consider more expressive logics. In our logics we utilise regular path
queries (RPQs) for pattern matching, following the longstanding tradition (see [1] , [9]) and
combine RPQs with first order conditions on data values (in the spirit of [7], [4]); using two
different approaches.
1. Extending FO with RPQ(Σ)

Syntax of the language L is defined recursively as follows:

1. φ ∈ L for all φ ∈ FO(τ,Σ).

2. ex,y[φ(x, y, z̄)](s, t) ∈ L for all e ∈ RE(Σ), φ(x, y, z̄) ∈ FO(τ,Σ) and terms s and t.

3. L is closed under Boolean operators and the quantifiers ∃, ∀.

Semantics of the language L is defined as usual for (1) and (3). We will define satisfaction
relation explicitly for (2): Let ⟨G,M, δi : i ∈ n⟩ be a (τ,Σ)-structure and a, b, c̄ ∈ M .
⟨G,M, δi : i ∈ n⟩ |= ex,y[φ(x, y, z̄)](s, t) iff there is a path πt

s in G such that the label of the path
λ(πt

s) ∈ e and for every edge (u, v) ∈ Ea of πt
s we have (u, v) ∈ {(x, y) : ⟨G,M⟩ |= φ(x, y, c̄)}.

Example 5. The query in the example is L-definable by the following formula:

∃p0p1Σ∗
x,y[

(
(δ0(x)− p0)

2 + (δ1(x)− p1)
2 < r2

)
∧
(
δ0(y)− p0)

2 + (δ1(y)− p1)
2 < r2

)
](s, t).

One can eliminate the unrestricted existential quantification as follows:

Σ∗
x,y[(δ0(x)− δ0(y))

2 + (δ1(x)− δ1(y))
2 < 4r2](s, t).

2. Conditioning RPQ(Σ) with FO in a path sensible setting
To capture the path structure in the logic, we add a predicate P for path nodes, a countable
index set I ⊆ M , and an index predicate index (realised ⊆ I) representing a path index. We
include a symbol <P for ordering the indices and edge relation symbols E ′

a for each a ∈ Σ to
represent path edges.

Syntax of the language L′ is defined recursively as follows:

1. e ∈ L′ for all e ∈ RE.

2. e[φ(x̄)] ∈ L′ for all φ(x̄) ∈ FO(τ, {Ea, E
′
a, P, index, <P : a ∈ Σ})

Semantics of the language L′ is defined recursively as follows:

1. ⟨G,M, δi : i ∈ n⟩ |= e(s, t) iff there exists a path πt
s.

2. ⟨G,M, δi : i ∈ n⟩ |=[x̄/ā] e[φ(x̄)](s, t) iff there exists a path πt
s satisfying:

⟨G,M, P πts, indexπ
t
s, E ′

a
πts, δi : i ∈ n, a ∈ Σ⟩ |= φ(ā).

Example 6. The query in the example is L′-definable by the following formula:

Σ∗
x,y[∃p0p1∀xP (x) →

(
(δ0(x)− p0)

2 + (δ1(x)− p1)
2 < r2

)
](s, t).

One can eliminate the unrestricted existential quantification as follows:

Σ∗
x,y[∀xyP (x) ∧ P (y) →

(
(δ0(x)− δ0(y))

2 + (δ1(x)− δ1(y))
2 < 4r2

)
](s, t).

References:

