
Extending Pattern Matching Queries in Property Graphs with
Interpreted Predicates

Leonid Libkin2,3,5, Cristina Sirangelo1,2,4, and Deniz Yilmaz1,2,4

1 CNRS 2IRIF 3RelationalAI 4Université Paris Cité 5University of Edinburgh

Extending Pattern Matching Queries in Property Graphs with
Interpreted Predicates

Leonid Libkin2,3,5, Cristina Sirangelo1,2,4, and Deniz Yilmaz1,2,4

1 CNRS 2IRIF 3RelationalAI 4Université Paris Cité 5University of Edinburgh

Example 1
Social network: nodes are users carrying age information and→ is “follow”.

•20s •24 •28 •25 •21

•
40

•
46

•
24
t

u, v are potential friends if

• there is w such that u→w←v and

• both have less than five years age difference with w.

Query: Are s and t connected with a chain of potential friends?

Example 2

Graph on the plane: nodes are points on R2 and Σ-labeled edges.

s t

v1
v2

v3

s t

v1
v2

v3

?p

Query: Is there a path π from s to t such that every node in π is at distance less
than 1 from a common point p ∈ R2?Data-Path Queries

“Data-Path = Navigational + Relational”

Candidate: Regular Path Queries and first order logic over the underlying data structure.

Example 1: a typical data-path query using no unrestricted quantifiers.

Example 2: a typical data-path query using unrestricted quantifiers.

Structures
An n-dimensional embedded data graph consists of:

1. an underlying structure M , for data values and operations on them, and

2. a finite graphG whose nodes are n-tuples overM and whose edges are labeled by elements
of a finite alphabet Σ.

Examples of underlying structures: (Q, <), (R,+, <), (R,+,×, <), (Z,+, <) . . .core-Data-Path Logic
Key construct of cDPL is given by:

ex,y[φ(x, y)](s, t)

where

• e is a regular expression over Σ;

•φ(x, y) is a (two-sorted) first-order formula over {M,G};
• s, t are the only free variables of the cDPL-formulas.

Example 1 can be expressed in cDPL by

(→←)∗x,y[(age(y) < age(x) + 5) ∨ (age(x) < age(y) + 5)](s, t).

Data Path Logic
The syntax of Data-Path Logic, denoted DPL is given by:

ex,y[φ(x, y, z̄)](s, t) | ¬Φ | Φ ∨ Ψ | Φ ∧ Ψ | ∃z Φ | ∀z Φ
where the atoms ex,y[φ(x, y, z̄)](s, t) as cDPL, but allow additional free variables.

Example 2 can be expressed in DPL by

∃p1p2 Σ∗x,y[(x1 − p1)
2 + (x2 − p2)

2 < 1 ∧ (y1 − p1)
2 + (y2 − p2)

2 < 1](s, t).
Collapse Results

1.DPLact : the fragment of DPL which uses only restricted quantifiers.

2.M admits restricted quantifier collapse for DPL if every DPL query is equivalent to a
DPLact query.

Theorem.Every “good”M admits restricted quantifier collapse for DPL.

Examples of
Good structures: (Q, <), (R, <), (Q,+, <), (R,+, <), (R,+,×, <), . . .
Bad structures: (N,+,×), Random Graph, (N,+, 2n), (Q,+,×, <) . . .

Complexity Results

Proposition. If M is “good”, then:

1. Data complexity of DPL is in NL.

2. Data complexity with restrictors on the shapes of paths trail or acyclic is in NP.

What’s next?
Observe that DPL has very limited nesting.
Example 3

•1s •2 •3 •4 •10

•
6

•
7

•
8

•
9

•
5
t

Query: Is there a path π from s to t such that

1. π follows the pattern x→z←y and

2. z = x+y
2 ?

Regular Expressions with Conditions

a | e.e′ | e ∪ e′ | e− | e∗ | e[φ]
where a ∈ Σ, e, e′ ∈ REC and φ ∈ FO(M,Σ).

Example 3 can be expressed in REC:(
(→←)[∃z(x→z) ∧ (z←y) ∧ (z + z = x + y)]

)∗
(s, t)

Observations:

• cDPL is a sublogic of REC.

•DPL is a sublogic of FO(REC).
•FO(REC) has the same collapse results and data complexity as DPL.

G |= e(s, t) iff there exists πt
s ⊩ e

where we define ⊩ recursively as:

1. πt
s ⊩ a iff (s, t) ∈ aG.

2. πt
s ⊩ e.e′ iff there exists π1, π2 such that πt

s =
π1π2 and π1 ⊩ e and π2 ⊩ e′.

3. πt
s ⊩ e ∪ e′ iff πt

s ⊩ e or πt
s ⊩ e′.

4. πt
s ⊩ e− iff πs

t ⊩ e.

5. πt
s ⊩ e∗ iff for some n, there exists π1, . . . , πn such

that πt
s = π1 . . . πn and πi ⊩ e for all 1 ≤ i ≤ n.

6. πt
s ⊩ e[φ] iff πt

s ⊩ e and G |= φ(s, t).

! p does not need to be a node in the graph.

! This framework is an instance of the “Embedded Finite Structures” in-

troduced in Benedikt and Libkin, 1996.

Semantics: Let G = {M,G}.
G |= ex,y[φ(x, y)](s, t) iff

1. there is a path π inG with the label
λ(π) ∈ e and

2. for every edge (vj, vj+1) in π we
have G |=[vj/x, vj+1/y] φ(x, y).

! cDPL can not express Example 2 since it requires quantification “outside” the cDPL-

expressions. So we shall extend cDPL by closing it under first-order logic. (go to DPL)

! These free variables may be of sort G or M . Thus, quantification may range either

• over nodes of G (called active domain quantification) or

• over elements of M (called unrestricted quantification).

Q: Can we evaluate DPL?

A: It depends on the model theory.

! “Good”means M is o-minimal and admits quantifier elimination.

! DPL can not express this query requiring nesting.

! cDPL is “flat”REC.

Q. Can FO(REC) express the path patterns of GQL
and serve to enrich it with additional data types?

