

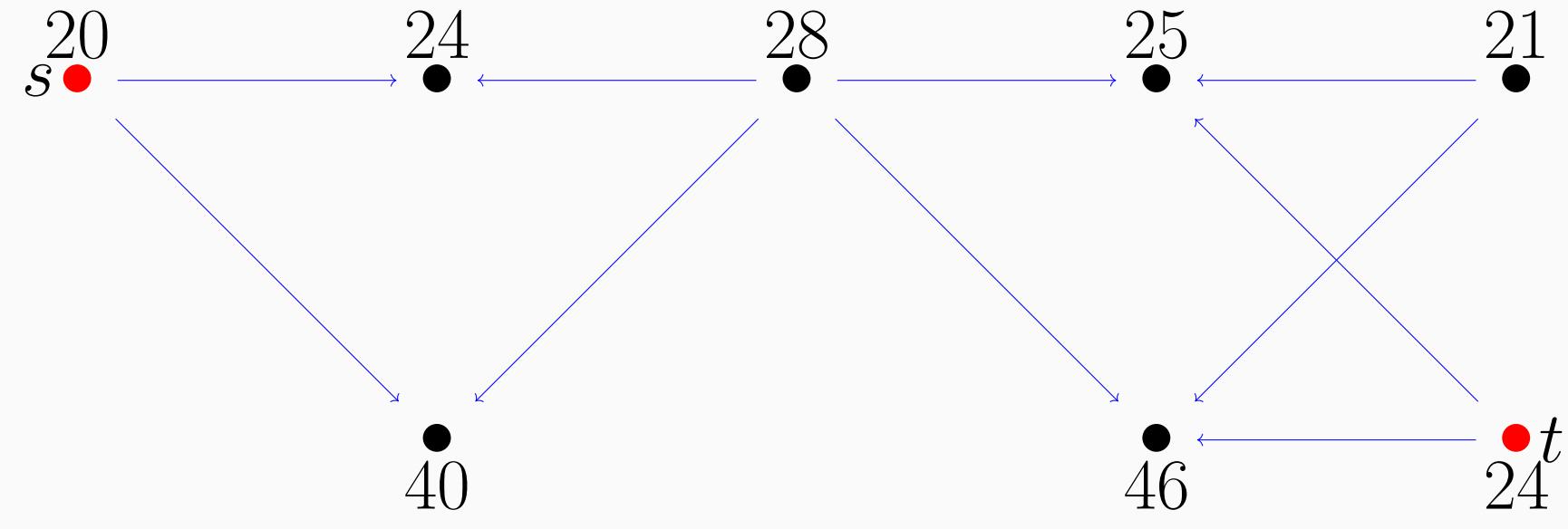
EXTENDING PATTERN MATCHING QUERIES IN PROPERTY GRAPHS WITH INTERPRETED PREDICATES

Leonid Libkin^{2,3,5}, Cristina Sirangelo^{1,2,4}, and Deniz Yilmaz^{1,2,4}

¹ CNRS ²IRIF ³RelationalAI ⁴Université Paris Cité ⁵University of Edinburgh

Example 1

Social network: nodes are users carrying age information and \rightarrow is “follow”.



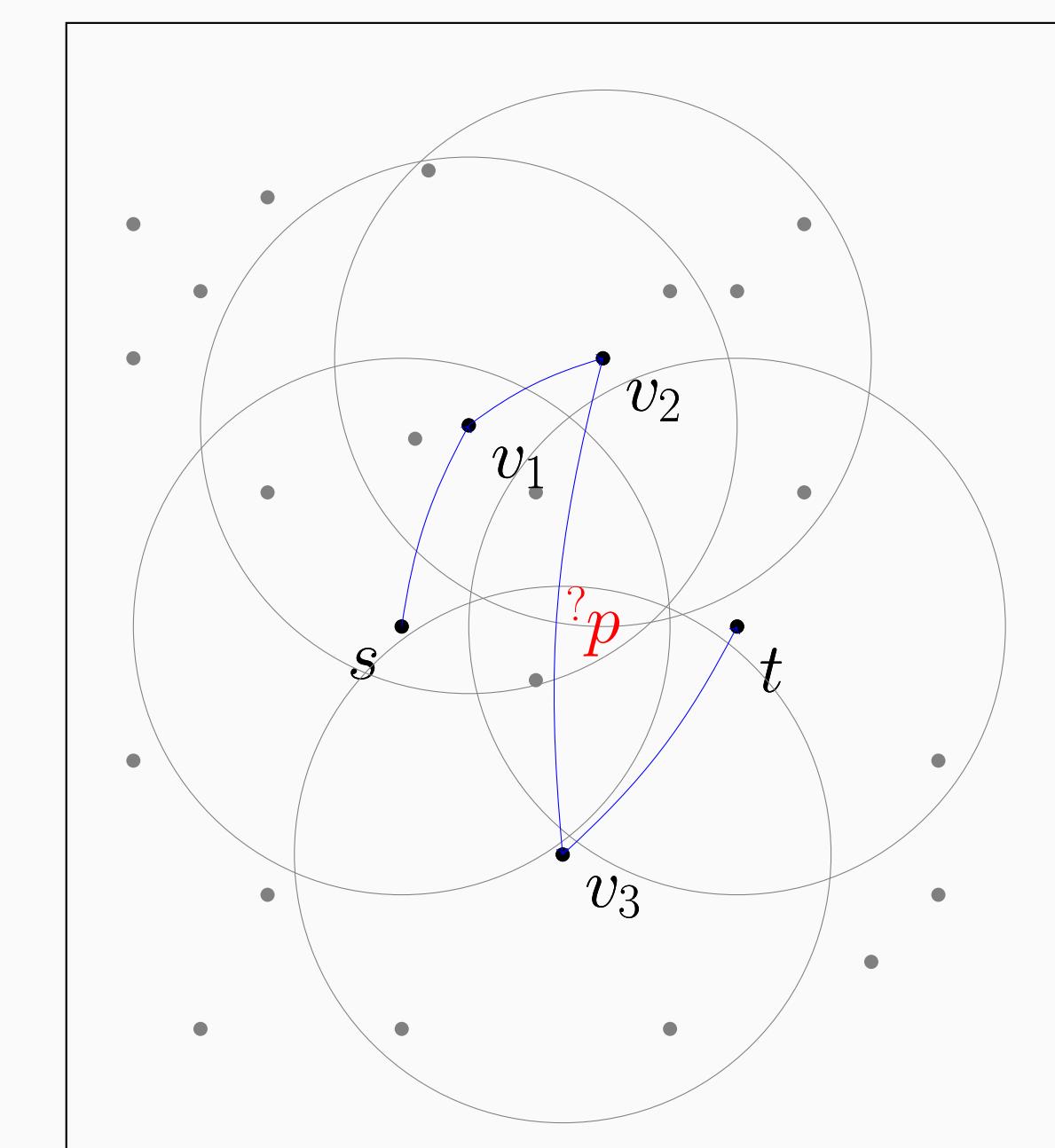
u, v are *potential friends* if

- there is w such that $u \rightarrow w \leftarrow v$ and
- both have less than five years age difference with w .

Query: Are s and t connected with a chain of potential friends?

Example 2

Graph on the plane: nodes are points on \mathbb{R}^2 and Σ -labeled edges.



Query: Is there a path π from s to t such that every node in π is at distance less than 1 from a common point $p \in \mathbb{R}^2$?

⚠ p does not need to be a node in the graph.

Data-Path Queries

“Data-Path = Navigational + Relational”

Candidate: Regular Path Queries and first order logic over the underlying data structure.

Example 1: a typical data-path query using no unrestricted quantifiers.

Example 2: a typical data-path query using unrestricted quantifiers.

core-Data-Path Logic

Key construct of cDPL is given by:

$$e_{x,y}[\varphi(x, y)](s, t)$$

where

- e is a regular expression over Σ ;
- $\varphi(x, y)$ is a (two-sorted) first-order formula over $\{M, G\}$;
- s, t are the only free variables of the cDPL-formulas.

Example 1 can be expressed in cDPL by

$$(\rightarrow\leftarrow)^*[(\text{age}(y) < \text{age}(x) + 5) \vee (\text{age}(x) < \text{age}(y) + 5)](s, t).$$

Semantics: Let $\mathcal{G} = \{M, G\}$.

$\mathcal{G} \models e_{x,y}[\varphi(x, y)](s, t)$ iff

1. there is a path π in G with the label $\lambda(\pi) \in e$ and
2. for every edge (v_j, v_{j+1}) in π we have $\mathcal{G} \models_{[v_j/x, v_{j+1}/y]} \varphi(x, y)$.

⚠ cDPL can not express Example 2 since it requires quantification “outside” the cDPL-expressions. So we shall extend cDPL by closing it under first-order logic. (go to DPL)

Collapse Results

1. DPL_{act} : the fragment of DPL which uses only restricted quantifiers.

2. M admits *restricted quantifier collapse* for DPL if every DPL query is equivalent to a DPL_{act} query.

Theorem. Every “good” M admits restricted quantifier collapse for DPL.

Examples of

Good structures: $(\mathbb{Q}, <)$, $(\mathbb{R}, <)$, $(\mathbb{Q}, +, <)$, $(\mathbb{R}, +, <)$, $(\mathbb{R}, +, \times, <)$, \dots

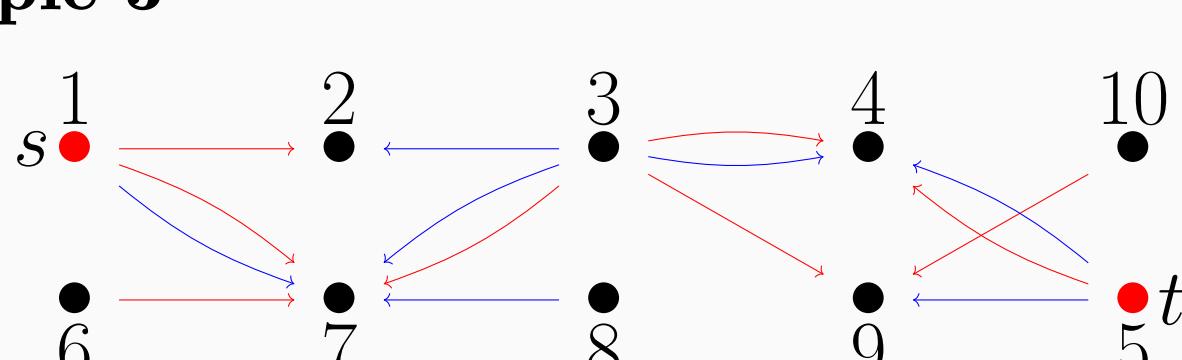
Bad structures: $(\mathbb{N}, +, \times)$, Random Graph, $(\mathbb{N}, +, 2^n)$, $(\mathbb{Q}, +, \times, <)$ \dots

⚠ “Good” means M is *o-minimal* and admits *quantifier elimination*.

What's next?

Observe that DPL has very limited nesting.

Example 3



Query: Is there a path π from s to t such that

1. π follows the pattern $x \rightarrow z \leftarrow y$ and
2. $z = \frac{x+y}{2}$?

⚠ DPL can not express this query requiring nesting.

Regular Expressions with Conditions

$$a \mid e \cdot e' \mid e \cup e' \mid e^- \mid e^* \mid e[\varphi]$$

where $a \in \Sigma$, $e, e' \in \text{REC}$ and $\varphi \in \mathcal{FO}(M, \Sigma)$.

Example 3 can be expressed in REC:

$$\left((\rightarrow\leftarrow)^* [\exists z (x \rightarrow z) \wedge (z \leftarrow y) \wedge (z + z = x + y)] \right)^*(s, t)$$

Observations:

- cDPL is a sublogic of REC.
- DPL is a sublogic of $\mathcal{FO}(\text{REC})$.
- $\mathcal{FO}(\text{REC})$ has the same collapse results and data complexity as DPL.

⚠ cDPL is “flat” REC.

$\mathcal{G} \models e(s, t)$ iff there exists $\pi_s^t \Vdash e$ where we define \Vdash recursively as:

1. $\pi_s^t \Vdash a$ iff $(s, t) \in a^{\mathcal{G}}$.
2. $\pi_s^t \Vdash e \cdot e'$ iff there exists π_1, π_2 such that $\pi_s^t = \pi_1 \pi_2$ and $\pi_1 \Vdash e$ and $\pi_2 \Vdash e'$.
3. $\pi_s^t \Vdash e \cup e'$ iff $\pi_s^t \Vdash e$ or $\pi_s^t \Vdash e'$.
4. $\pi_s^t \Vdash e^-$ iff $\pi_s^t \Vdash e$.
5. $\pi_s^t \Vdash e^*$ iff for some n , there exists π_1, \dots, π_n such that $\pi_s^t = \pi_1 \dots \pi_n$ and $\pi_i \Vdash e$ for all $1 \leq i \leq n$.
6. $\pi_s^t \Vdash e[\varphi]$ iff $\pi_s^t \Vdash e$ and $\mathcal{G} \models \varphi(s, t)$.

Q. Can $\mathcal{FO}(\text{REC})$ express the path patterns of GQL and serve to enrich it with additional data types?